Estatistica Computacional em Python

Daniel Furtado Ferreira

Data: 04/12/2025

ii

Table of contents

Prefacio

1 Introdugao ao Python

1.1

1.2
1.3
14

1.5
1.6
1.7
1.8
1.9

Introdugao aos Comandos e Objetos do Python
1.1.1 Operagdes Aritméticas Bésicas
Varidveis Booleanas Lo oo
Strings
Listas, Tuplas, Conjuntos e Diciondrios
1.4.1 Listas o . e
1.4.2 Tuplas e
1.4.3 Conjuntos
1.4.4 Diciondrios e
Matrizes € Arranjoso
Arquivosde Dados
Estruturas de Controle de Programagdo
Fungbes L
Estatistica Computacional00
1.10 Exercicios

2 Variaveis Aleatorias Uniformes

2.1
2.2
2.3

Numeros Aleatorios Uniformes
Numeros Aleatérios Uniformes no Python
Exercicios e

3 Variaveis Aleatéorias Nao-Uniformes

3.1
3.2
3.3
3.4
3.5
3.6

Introdugdo. L
Métodos Gerais para Gerar Realizagoes de Varidveis Aleatérias . . .
Varidveis Aleatérias de Algumas Distribui¢oes Importantes
Distribui¢ao Binomialo 0oL

Rotinas Python para Geracao de Realizagoes de Varidveis Aleatorias

Exercicios

4 Geracgao de Amostras Aleatérias de Variaveis Multidimensionais

4.1
4.2
4.3
4.4
4.5
4.6

Introdugdoo
Distribui¢do Normal Multivariada
Distribuicdo Wishart e Wishart Invertida
Distribuigao t de Student Multivariada
Outras Distribuigoes Multivariadas
Exercicios

iii

i

0 00 ~J ~J U i~ W

14

17
19
22
27
30
33
34

37
37
41
42

45
45
45
49
54
58
60

iv

TABLE OF CONTENTS

5 Algoritmos para Médias, Variancias e Covariancias s
5.1 Imtroducdo. e 7
5.2 Algoritmos Univariados e 7
5.3 Algoritmos para Vetores Médias e Matrizes de Covaridncias 81
5.4 Exercicios e 82

6 Aproximacgao de Distribuic¢Ges 85
6.1 Introdugdo. 85
6.2 Modelos Probabilisticos Discretos 90
6.3 Modelos Probabilisticos Continuos e 94
6.4 Quadraturas Gaussianasl e 101
6.5 Newton-Raphson e 107
6.6 Fungbes Pré-Existentes no Python oo oo o 109
6.7 Exercicios e 109

7 Conjuntos e Elementos de Andalise Combinatéria em Python 111
7.1 Introdugdo a Analise Combinatéria no Python 111
7.2 Permutagdes € Arranjoso e 112
7.3 Contagem e 114
7.4 Conjuntos em Python 119
7.5 Alguns Problemas de Probabilidade 122
7.6 Exercicios 132

8 Métodos Bootstrap em Python 133
8.1 Introdugdo. e e e e 133
8.2 Bootstrap Nao-Paramétrico e 133
8.3 Estimacdo L e e 134

8.3.1 Erro padrao: e 134
8.3.2 Correcao de Viés: 137
8.3.3 Intervalo de Confianca Padrao de Bootstrap 138
8.3.4 Intervalo de Confianca Baseado em Percentis Bootstrap 140
8.3.5 Intervalo de Confianga Bésico de Bootstrap 142
8.3.6 Intervalo de Confianca Bootstrap com Correcao de Viés Acelerado 143
8.3.7 Intervalo de Confianca Bootstrap com Correcdo de Viés 146
8.3.8 Bootstrapno Python 146
References 149

Prefacio

O Livro Estatistica Computacional em Python é um resumo e adaptacao do Livro Estatistica Computa-
cional em Java, publicado pela Editora UFLA. Este Livro tem por objetivo primeiro o aprimoramento do
autor em Quarto e, segundo, o aprendizado de Python.

Adaptaremos inicialmente a apostila Estatistica Computacional em R para abrigar os cddigos em Python.
Posteriormente, ampliaremos o contetido desta primeira Edicao do Livro.

Para aprender mais sobre Livros do Quarto visite o site https://quarto.org/docs/books.

Nestas notas de aula tivemos a intencao de abordar o tema de estatistica computacional que é tao
importante para a comunidade cientifica e principalmente para os estudantes dos cursos de pds-graduacao
em estatistica. Podemos afirmar sem medo de errar que a estatistica computacional se tornou e é hoje
em dia uma das principais areas da estatistica. Além do mais, os conhecimentos desta area podem ser
e, frequentemente, sdo utilizados em outras areas da estatistica, da engenharia e da fisica. A inferéncia
Bayesiana é um destes exemplos tipicos em que geralmente utilizamos uma abordagem computacional.
Quando pensamos nestas notas de aulas tivemos muitas dividas do que tratar e como abordar cada tépico
escolhido. Assim, optamos por escrever algo que propiciasse ao leitor ir além de um simples receitudrio,
mas que, no entanto, nao o fizesse perder em um emaranhado de demonstragdes. Por outro lado buscamos
apresentar os modelos e os métodos de uma forma bastante abrangente e nao restritiva.

Uma outra motivacdo que nos conduziu e nos encorajou a desenvolver este projeto, foi a nossa experiéncia
pessoal em pesquisas com a estatistica computacional. Também fizemos isso pensando no beneficio pessoal,
nao podemos negar, que isso nos traria ao entrarmos em contato direto com a vasta publicacdo existente
neste ramo da estatistica. Nao temos, todavia, a intencao de estudarmos todos os assuntos e nem mesmo
pretendemos para um determinado tépico esgotar todas as possibilidades. Pelo contrario, esperamos que
estas notas sejam uma introdugdo a estatistica computacional e que sirvam de motivacdo para que os
alunos dos cursos de graduagao em estatistica possam se adentrar ainda mais nessa area.

Estas notas sdo baseadas em um livro que escrevemos sobre a estatistica computacional utilizando a
linguagem Java. A adaptacdo para o Python de algumas das rotinas implementadas neste livro foi uma
tarefa bastante prazerosa e reveladora. Aproveitamos esta oportunidade para desvendar um pouco dos
intimeros segredos que este poderoso programa possui e descobrir um pouco sobre seu enorme potencial
e também, por que nao dizer, de suas fraquezas. Nessa primeira versao nao esperamos perfeicao, mas
estamos completamente cientes que muitas falhas devem existir e esperamos contar com a colaboragao
dos leitores para sana-las. Estamos iniciando a primeira versao nao revisada e nao ampliada, utilizando
ainda o Quarto e trocando o R para o Python. Essas notas serdo constantemente atualizadas na internet.
Esperamos que este manuscrito venha contribuir para o crescimento profissional dos estudantes de nosso
programa de pés-graduagdo em Estatistica e Experimentacio Agropecudria, além de estudantes de outros
programas da UFLA ou de outras institui¢oes. Dessa forma nosso objetivo terd sido atingido.

Prefacio

Chapter 1

Introducao ao Python

O programa Python foi escolhido para ministrar este curso por uma série de razoes. Além de ser um
programa livre, no sentido de possuir livre distribuicao e cédigo fonte aberto, pode ser utilizado nas
plataformas Windows e Linux. Além do mais, o Python possui grande versatilidade no sentido de possuir
intimeros pacotes ja prontos e nos possibilitar criar novas rotinas e fung¢oes. O PyPi é o repositério oficial
do Python onde todos os pacotes sdo armazenados. Vocé pode pensar nele como um Github para os
pacotes do Python. O Python foi criado pelo holandés Guido van Rossum para ser uma linguagem de
programacao simples e legivel, além de ser muito produtiva. O Python evoluiu e se tornou em uma
linguagem muito atrativa e uma das principais escolhas para aplica¢des de desenvolvimento web, andlise
de dados e inteligéncia artificial, entre outras. Por ser genuinamente um programa orientado por objeto
nos possibilita programar com muita eficiéncia e versatilidade, embora apresente algumas diferengas em
sua implementacdo em relacdo a outras linguagens orientadas por objetos. Outro aspecto que é bastante
atrativo no Python refere-se ao fato de o mesmo receber contribui¢des de pesquisadores de todo o mundo
na forma de pacotes. Essa é uma caracteristica que faz com que haja grande desenvolvimento do programa
em relativamente curtos espagos de tempo e que nos possibilita encontrar solugoes para quase todos os
problemas com os quais nos deparamos em situagoes reais. Para os problemas que nao conseguimos
encontrar solucoes, o ambiente de programacao Python nos possibilita criar nossas préprias solugoes.

Nestas notas de aulas pretendemos apresentar os conceitos basicos da estatistica computacional de uma
forma bastante simples. Inicialmente obteremos nossas préprias solucoes para um determinado método ou
técnica e em um segundo momento mostraremos que podemos ter a mesma solugao pronta do Python
quando esta estiver disponivel. Particularmente neste capitulo vamos apresentar algumas caracteristicas
do ambiente e da linguagem para implementarmos nossas solugoes. Nosso curso nao pretende dar solugoes
avancadas e de eficiéncia maxima para os problemas que abordaremos, mas propiciar aos alunos um
primeiro contato com a linguagem Python e com os problemas béasicos da estatistica computacional.

Alguns esforcos iniciais sdo necessarios até que consigamos obter algum beneficio. Nao temos a intengao
de apresentar neste curso os recursos do Python para andlises de modelos lineares de posto completo ou
incompleto, de modelos nao-lineares, de modelos lineares generalizados ou de gréaficos. Eventualmente
poderemos utilizar algumas destas fungbes como um passo intermediario da solugdao do problema que
estaremos focando. Este material serd construido com uma breve e simplificada abordagem tedrica do
tépico e associard exemplificacoes praticas dos recursos de programacao Python para resolver algum
problema formulado, em casos particulares da teoria estudada.

Este material é apenas uma primeira versao que devera ter muitos defeitos. Assim, o leitor que encontra-los
ou tiver uma melhor solucio para o problema poderd contribuir enviando um e-mail para danielff@ufla.br.

Visite minha homepage https://des.ufla.br/~danielff/.

3

mailto:danielff@ufla.br
https://des.ufla.br/~danielff/

4 CHAPTER 1. INTRODUCAO AO PYTHON

1.1 Introducao aos Comandos e Objetos do Python

No Python os objetos podem ser de diferentes tipos ou estruturas, tais como os nimeros (int, float e
complexos), boolean, string, list, tuple, set, dictionary, functions (objeto que encapsula cddigos),
dataframes e muitos outros. Vamos descrever de forma sucinta e gradativa alguns destes objetos e
comandos béasicos do Python.

As instrugoes do Python podem ser escritas em um editor de texto e digitadas no terminal do programa.
Para usarmos o Python, inicialmente instalamos uma distribui¢do do Programa. Recomendamos a versao
atual (no momento do langamento do livro) que pode ser baixada no site https://www.python.org/ do
link https://www.python.org/ftp/python/3.13.0/python-3.13.0-amd64.exe. Para digitarmos os cddigos,
recomendamos que seja baixado o program livre Positron no site https://posit.co/ usando o link https:
//github.com /posit-dev/positron /releases/download/2024.11.0-140/Positron-2024.11.0- 140-Setup.exe.

Veja um print do Positron:

| B File Edit Selection View Go Run Terminal Help teste.py - Positron DO @O - [m] XT
@ New~ [Cpen~ < Q, Search v @ DPython 3.13.0 (Global) B v
l EXPLORER @ welcome ® testepy 1 X -~ M - SESSION HELP VIEWER CONNECTIONS X
~~ NO FOLDER OPENED C: » Users > danie » OneDrive > Documents > lixo > & testepy ~ PLOTS
1 def myFunc(x): ™ 0 -
You have not yet 2 if x == 3: @
Qpenediaiioltar 3 print(DoesNotExist(x))
4 else:
5 print('x: ',x)
Opening a folder will &
7 myFunc(2.5)
close all currently
open editors. To keep 8
them open, add a g x = 1.23456
R L 18 ‘value iz {:@.3f}'.format(x)
11 1
12 import math
13 import numpy
14 import simpy
15 import sympy
16 import PIL
17 import matplotlib
18 ~ VARIABLES
CONSOLE TERMINAL PROBLEMS o QUTPUT PORTS DEBUG CONSOLE ~ — O BRI @ = |
Python 3.12.0 (Global) ~ B3 ~ O e - = Python 3.13.0 (Global) * filte i
Python 3.13.8 (Global) started. Mo variables have been created. |
9.81s - Debugger warning: It seems that frozen modules are being used,
which may ‘
0.80s - make the debugger miss breakpoints. Please pass - |
Xfrozen_modules=off |
thon to disable frozen modules. |
cbugging will |
PYDEVD_DISABLE_FILE_VALIDATION=1 © isable this w |
Python 3.13.@ (tags/v3.13.8:6848335, Oct 7 2824, ©9:38:87) [MSC v.1941 !
64 bit (AMDE4)] |
Type 'copyright’, ‘credits’ or 'license’ for more information
% OUTLINE IPython 8.29.8 -- An enhanced Interactive Python. Type '2?' for help.
> TIMELINE s l
@1A0 W0 Quarte: 1633 Ln1,Col 1 Spaces:2 UTF-8 CRLF {} Python £}

Figure 1.1: Positron: para cédigos em Python ou R

Uma vez instalado, podemos digitar os cdédigos e com Ctrl Enter executamos os cédigos linha por linha
ou um bloco de linhas marcadas. E importante instalarmos algumas bibliotecas basicas, caso elas ja nao
estejam instaladas. A seguir, temos um cédigo Python para esse propdsito.

pip install numpy
pip install sympy
pip install PIL

https://www.python.org/
https://www.python.org/ftp/python/3.13.0/python-3.13.0-amd64.exe
https://posit.co/
https://github.com/posit-dev/positron/releases/download/2024.11.0-140/Positron-2024.11.0-140-Setup.exe
https://github.com/posit-dev/positron/releases/download/2024.11.0-140/Positron-2024.11.0-140-Setup.exe

1.1. INTRODUGQAO AOS COMANDOS E OBJETOS DO PYTHON 5

pip install jupyter
pip install matplotlib

Em seguida devemos importar as libraries que precisarmos. No script a seguir consideramos a importacao
de todas as libraries. A library math néo precisa ser instalada, pois ja vem com as distribui¢oes do Python.

import math
import numpy
import sympy
import PIL

import jupyter
import matplotlib

1.1.1 Operagoes Aritméticas Basicas

Podemos usar o Python como uma calculadora, temos o seguinte programa, em que cada linha fisica do
editor tem um comando Python especifico. Podemos separar em uma mesma linha varios comandos com
ponto e virgula.

Programa ilustrativo de operacgdes elementares
em Python

1+2+3 # soma dos 3 primeiros inteiros
3%*%10 - 1 + 8

6 / 5 + 0.5%x4

6
59056
1.2625

Podemos observar que o simbolo # é usado para inserirmos comentérios no cédigo Python e o operador /
faz divisdo usando operadores reais. Para divisdo de inteiros, podemos usar //, assim, 6 // 5 retorna 1
e 6 / 5retorna 1,2. O resto da divisdo por inteiro é obtido pelo operador %. Assim, 6 % 5 retorna 1.
Temos também que o operador ** é a funcdo poténcia, ou seja, por exemplo, 3'° é 3%x10 em Python.

O Python também pode realizar operagdes com ntimeros complexos, que no caso, sdo representados por
a+bj, em que a é a parte real do niimero e bj, a parte imaginaria, sendo j = v/—1. O j é representado
por i nos livros de matemaética e de outras dreas. O programa a seguir ilustra uma operacdo com ndimeros
complexos dada por (6 — 44)2. Assim, temos

(6-47j)**2

(20-483)

Apresentamos a seguir um script que faz uso da library math, cujo primeiro comando foi para importa-la,
o pentltimo para obter o valor de 7 e o tltimo comando calculou /2. Também fizemos mais uma operacio
com numeros complexos.

import math
2 +4 +5.6
2/3-4
(3-43)*(3+43)
math.pi
math.sqrt(2)

11.6

6 CHAPTER 1. INTRODUCAO AO PYTHON

-3.3333333333333335
(25+07)
3.141592653589793
1.4142135623730951

As bibliotecas numpy e sympy sdo para diversos calculos matematicos, sendo que a tltima efetua calculos
simbdlicos.

import sympy

import numpy

numpy .set_printoptions(legacy='1.25")

sympy . sin (sympy.pi/5)

numpy . sin(numpy.pi/5)

type(1.5 + 2.1j) # tipo do objeto

5 Vb

8 8
0.5877852522924731

complex

Podemos realizar uma operacao matematica basica como algumas das anteriormente apresentadas ou até
mesmo, mais complexa e armazenar o valor em uma variavel, digamos x. Essa varidvel pode ser usada
para outras operagdes mateméticas e até simbdlicas, se usarmo o sympy. Veja Knuth [1984] para discussio
sobre programacao simbodlica. O script a seguir ilustra alguns casos deste procedimento.

X = sympy.symbols('y")

Z (1+x*%2) *%2

sympy . simplify(z)

y = 2.3 + 6.7*%2

r = yx*2 + 1 / 2%x3

print('r =', r, 'y ="', y, 'e',

2
(v*+1)
r = 2227.0211 y = 47.19 e z = (y**2 + 1) *%2

Assim, atribuimos dados as variaveis Python. O Python diferencia maitsculas de mintsculas e nomes
como X e x sao diferentes. No Python as varidveis sdo ponteiros (pointers). Comandos como x = 2 cria um
objeto z e atribuf (armazena) o valor 2 nele em outras linguagens, mas no Python, hd um objeto inteiro 2
e x é um ponteiro, apontando para ele. Veja as consequéncias disso a seguir, sendo que o comando \n
realiza uma quebra de linha. Nao h& maiores implicagoes em objetos escalares como este, mas quando se
trata, por exemplo, de listas, nosso préximo objeto, a questao ja é bem diferente.
XxX=z2=b=1
b =7
print('x is pointing to', x,

'\nz is pointing to', z, '\nb is pointing to', b)

x is pointing to 1
z is pointing to 1
b is pointing to 7

Para lidarmos com fung¢bes de niimeros complexos a library cmath deve ser importada e as fungoes
trigonométricas de nimeros complexos podem ser usadas com base nesta biblioteca e ndo na library math,

1.2. VARIAVEIS BOOLEANAS 7

que é designada para ndmeros reais (float). Veja o script ilustrativo a seguir.

import cmath
(cmath.cos(0.1 - 0.4j) + cmath.sin(0.2 + 0.6j))**2.5

(1.0143106793360148+2.41645699237165437)

1.2 Variaveis Booleanas

Variaveis booleanas em Python recebem os valores True e False apenas. Varias operacoes de comparagoes
como ==, >=, <=, & (and), | (or) e ! (negacdo - not) podem ser usadas para este tipo de objeto, as
variaveis booleanas. Veja um simples exemplo disso. Posteriormente, voltaremos a falar destes operadores
de varidveis booleanas.

x = True

print('x = ',x)

y = False

print('y = ',y)

print(x != y) # ou

z = not(y)

print(x == z)

True
False

X

y

True

True

1.3 Strings

As strings (varidveis texto) sdo um importante tipo de objeto Python. Uma vez que temos um objeto
definido, os métodos e fungoes estao disponiveis para serem usados. As strings sdo denotadas por str em
Python. Veja alguns exemplos, em que as strings foram atribuidas ou néo a objetos (varidveis).

print('Esta é uma string')
mensagem = 'Universidade Federal
print (type (mensagem))

print (mensagem)

UFLA = mensagem + 'de Lavras, MG.'
print (UFLA)

Esta & uma string

<class 'str'>

Universidade Federal

Universidade Federal de Lavras, MG.

Alguns métodos que podemos usar com as strings sao ilustrados a seguir, entre muitos outros, mostrando
o poder da linguagem orientada por objetos.

UFLA.capitalize()

UFLA.lower ()

UFLA . upper ()
UFLA

'Universidade federal de lavras, mg.'

8 CHAPTER 1. INTRODUCAO AO PYTHON

'universidade federal de lavras, mg.'
'UNIVERSIDADE FEDERAL DE LAVRAS, MG.'
'Universidade Federal de Lavras, MG.'

Estes métodos atuam no objeto, mas, como ficou claro no exemplo anterior, ndo mudam o contetido
do objeto. Podemos realizar operagdes com strings, como ilustrado a seguir. O método str.format
possibilita formatar strings, como, por exemplo, incluir substrings nos campos marcados com {}.

UFLA * 2
nome = 'Nome: {}, Sobrenome: {}'
nome.format('Daniel', 'Furtado Ferreira')

'Universidade Federal de Lavras, MG.Universidade Federal de Lavras, MG.'
'Nome: Daniel, Sobrenome: Furtado Ferreira'

Podemos usar o Python para interagir com o usudrio, solicitando a entrada de dados (strings no caso)
com o comando input. Veja os exemplos a seguir.

nome = input('entre com seu primeiro nome: ')

print(nome + ' foi aprovado!')

x = int(input('entre com um valor inteiro: '))
transforma o str em inteiro: int

X # se o numero de entrada ndo for int, resulta em erro

Se o usudrio entrar com Daniel, o resultado serd Daniel foi aprovado!. Esta versio de Markdown ainda
nao suporta interatividade com o usuério. Portanto, o comando input néo foi avaliado na saida deste
script. No segundo comando, se o usudrio entrar com um niimero ndo inteiro, haverd uma mensagem de
erro do Python. Existem opgoes para lidar com erros deste tipo e de outras causas também.

1.4 Listas, Tuplas, Conjuntos e Dicionarios

Vamos abordar cada um destes objetos separadamente. Vamos comecar pelas listas.

1.4.1 Listas

As listas, 1lists sdo os primeiros blocos de construcao para lidarmos como manipulagao de dados. As
listas sao vetores cujo primeiro elemento inicia-se no 0, mas cujos elementos de cada célula pode ser
diferentes tipos mistos, desde inteiros, booleanos, reais, complexos, strings, caracteres, conjuntos, tuplas
e outras listas. As listas fazem parte do quarteto list, tuple, set e dictionary. A biblioteca numpy
fornece ferramentas adicionais para lidarmos com grande colegoes de dados.

X = [1: 2’ 3, 4]

X

y = [1, 'Estat', 3.5, 4+5j]
y

type (x)

type (y)

y[3]

[1, 2, 3, 4]

[1, 'Estat', 3.5, (4+5j)]

list

1.4. LISTAS, TUPLAS, CONJUNTOS E DICIONARIOS 9

list
(4+53)

A varidvel x é uma lista de inteiros com 4 elementos, que sdo indexados por 0, 1, 2, 3. Assim, z[1] aponta
para o valor 2 e z[0] para o valor 1. A varidvel y também é uma lista com 4 elementos de diferentes tipo,
sendo y[0] um inteiro, y[1] uma string y[2] um float e y[3], um ntimero complexo. Para criar a lista,
simplesmente utilizamos as chaves [1, com cada elemento da lista separado por uma virgula. E possivel
criar uma lista com elementos com valores repetidos e eles serdo identificados como sendo diferentes, pois
a lista respeita as ordens de entradas dos valores e preserva a ordem. Podemos verificar se um elemento
pertence a lista com o comando in, como mostra o script a seguir, entre outros exemplos.

[2, 71 == [7, 2]

[5, 71 == [5, 7, 7]

X

2 in x

7 in x

y

4+5j in y

'Daniel' in y

False

False

[1, 2, 3, 4]

True

False

[1, 'Estat', 3.5, (4+5j)]
True

False

Podemos, como foi feito com as strings realizar algumas operagdes aritméticas com as listas, como
mostra o exemplo do seguinte script.

xX+y

x+[[0,1], 'teste', [1,0]]

y*2

y[0] # primeiro elemento da lista

y[-1] # Gltimo elemento da lista

numeracdo -1,-2,-3,-4 para o indice

acessa as posigdes, 3,2,1,0,

respectivamente da lista y

[1, 2, 3, 4, 1, 'Estat', 3.5, (4+5j)]

(1, 2, 3, 4, [0, 1], 'teste', [1, 0]]

[1, 'Estat', 3.5, (4+5j), 1, 'Estat', 3.5, (4+5j)]
1

(4+53)

Vejamos agora o problema dos ponteiros, por meio do exemplo do script apresentado na sequéncia.

10 CHAPTER 1. INTRODUCAO AO PYTHON

x=2z=>b=[1,2,3]
b[1] =7
print('x is pointing to', x,
'\nz is pointing to', z, '\nb is pointing to', b)
todos os objetos foram alterados e ndo s6 b
pois eles apontam para a mesma lista [1,2,3]

x is pointing to [1, 7, 3]
z is pointing to [1, 7, 3]
b is pointing to [1, 7, 3]

Observamos que se x, z e b apontarem para o mesmo objeto, entdo se alterarmos o valor b[1] de 2 para 7,
entdo todos os trés objetos serdo alterados na posicao 1, que corresponde ao segundo valor da lista, pois
ela se inicia na posi¢do 0. Entretanto, se em vez de b[1] = 7 tivéssemos usado a atribuicao b = [7,9],
entao os vetores x e z nao seriam alterados, com a nova atribuicao do vetor b. Nos exemplos anteriores,
vimos também que os elementos de uma lista sdo acessados pelo seu indice que varia de 0 a n-1, sendo n o
seu tamanho. Assim, a lista x=[1,2,3,4] tem seus elementos x[0] igual a 1, x[1] igual a 2, x[2]igual a
3 e x[3] igual a 4. Também podemos variar o indice de -1 a -n, sendo que -1 significa a tltima posi¢ao
da lista, ou seja, a posicdo n-1, -2 corresponde a posi¢do n-2 e assim por diante até -n, que corresponde
a posicao 0 da lista.

As listas sdo objetos e como tais podemos utilizar alguns métodos associados a eles. As listas sdo mutéveis
e dindmicas (podemos alterar seus elementos), sdo ordenadas (cada elemento da lista possui uma ordem
definida na sua criagdo) e permitem elementos repetidos. Para usarmos um método ou uma fungio
deveremos considerar a diferenca entre eles. Embora todos métodos sejam func¢oes em Python, nem toda
funcdo é um método. As fungdes recebem os objetos como entradas e ndo os modifica e os métodos agem
nos objetos. A seguir apresentamos uma relagao de alguns métodos ou fungoes associados as listas:

e sort(): ordena a lista em ordem crescente.

e append(): adiciona um elemento ao final da lista.

e extend: adiciona multiplos elementos a lista.

e index(): usado para encontrar o indice de um elemento na lista.

e max(list): retorna o valor maximo de uma lista.

e min(list): retorna o valor minimo de uma lista.

e list(tuple): transforma uma tuple numa lista.

o len(list): retorna o tamanho da lista (niimero de elementos).

e filter(fun,list): filtra uma lista usando uma func¢io fun Python.

Vamos ilustrar alguns destes métodos com exemplos particulares. Vamos considerar uma lista e aplicarmos
o0 método sort () para ordenarmos os seus valores. Neste exemplo a seguir, vamos ver a diferenca de um
método e de uma fungao, observando como o método modifica o objeto que o chamou. Neste caso, a
chamada de um método é dada pelo nome da lista (objeto) seguida de um ponto e do nome do método:
lista.met ().

x = [7.4, 5.8, 9.3, 3.2]

print('x ori.',x) # objeto x original

x.sort()

print('x mod.: ',x) # objeto x modificado pelo método sort() ordenado

x ori. [7.4, 5.8, 9.3, 3.2]
x mod.: [3.2, 5.8, 7.4, 9.3]

1.4. LISTAS, TUPLAS, CONJUNTOS E DICIONARIOS 11

Para o método append temos o seguinte script, que acrescentou o més de Abril ao final de uma lista
com os trés primeiros meses do ano.

mes = ['Janeiro', 'Fevereiro', 'Marco'l

mes.append ('Abril')

print (mes)

['Janeiro', 'Fevereiro', 'Marcgo', 'Abril']

O método extend é aplicado na lista x anterior e acrescenta mais dois elementos ao final da mesma.
X

x.extend([1.6, 11.6])

X

x.sort() # ordena x, pois ndo estava mais em ordem

X

[3.2, 5.8, 7.4, 9.3]
[3.2, 5.8, 7.4, 9.3, 1.6, 11.6]
[1.6, 3.2, 5.8, 7.4, 9.3, 11.6]

O index() é um método para encontra o indice de um elemento na lista. Se o elemento procurado nao
estiver na lista, o Python mostrard uma mensagem de erro.

i = x.index(7.4)
i # lembre-se que a lista comega no O e ndo no 1

3

Jé as fungoes len, max() e min() atuam no objeto, passado como entrada da func¢ao, mas nao o modificam.
Veja o exemplo na lista x dos exemplos anteriores o efeito destas duas fungoes.

print ('Tamnho de x: ',len(x)) # tamanho da lista x
print ('Tamanho de mes: ',len(mes)) # tamanho da lista mes
b = max(x)

a = min(x)

print('a=min(x) = ',a)

print('b=max(x) = ',b)

print('mes: ',mes)

print('x: ',x) # x e mes ndo modificados

Tamnho de x: 6

Tamanho de mes: 4

a=min(x) = 1.6

b=max(x) = 11.6

mes: ['Janeiro', 'Fevereiro', 'Margo', 'Abril']

x: [1.6, 3.2, 5.8, 7.4, 9.3, 11.6]

Para ilustrar a uso da funcao filter () vamos considerar uma fungdo que retorna True ou False para
uma certa condi¢ao de interesse. Por exemplo, se quiséssemos saber quais niimeros dos seis elementos da
lista x possui resto da divisdo por 2 menor que 1,5. Esse resultado é obtido com a comparagdo a % 2 <=
1.5, que ird retornar verdadeiro ou falso para o niimero representado por a. S6 que devemos fazer isso
para todos os elementos da lista x ou de outra lista qualquer. Devemos criar uma fungao para receber
cada elemento da lista e verificar a condigcdo, retornando True ou False e passar pela fungdo filter ()
para realizar a iteragdo nos elementos da lista x ou na lista de interesse. Vamos criar um primeira fungio

12 CHAPTER 1. INTRODUCAO AO PYTHON

no exemplo a seguir e em seguida aplicar a fungdo filter (). O tipo de objeto retornado desta fungio é
filter, logo, tem de ser transformado em lista antes de imprimir.

def resto(a):
if ((a % 2) <= 1.5):
return True
else:
return False
aplicar a fungdo filter
x_filtrado = filter(resto, x)
print('x filtrado: ',list(x_filtrado))
print('x original: ',x)

x filtrado: [3.2, 7.4, 9.3]
x original: [1.6, 3.2, 5.8, 7.4, 9.3, 11.6]

Podemos usar a fungdo list(objeto) para construir uma lista a partir deste objeto, como ocorreu com
o objeto x_filtrado do script anterior. Entdo a funcdo 1ist() é um construtor de listas. Observe
que o operador % retorna o resto da divisdo por inteiro, que no caso, foi por 2. A funcéo resto retorna
verdadeiro ou falso, de acordo com a condicdo do resto da divisdo de a por 2. Para definir uma funcéo
necessariamente usamos o comando def seguido pelo nome da fungdo (resto) com o argumento (a).
Depois vem o corpo da fungédo, que deve ter indentacao obrigatéria. Nao ha separacao com {3} ou [] ou
outros caracteres para separar o corpo da funcdo. Esta separacao é feita apenas com uso das indentagoes
apropriadas. Falaremos posteriormente de funcdo com mais detalhes.

Podemos aproveitar algumas fungdes prontas das listas para calcularmos algumas quantidades de interesse,
como, por exemplo, a soma dos seus elementos. Para isso, poderfamos usar uma estrutura de repeticao,
como o for que veremos posteriormente e na medida que o loop se adianta, vamos atualizando a soma.
Porém podemos usar a fungdo sum(). Um loop for é executado como bytecode Python interpretado,
enquanto a funcgao sum() é escrita puramente na linguagem C, portanto, bem mais rapida e eficiente.
Veja o cédigo a seguir para ilustrarmos a soma de todos os valores do vetor x. Falaremos das estruturas
condicionais e de repeticdes posteriormente.

soma = sum(x)

print('Soma: ',soma)

média

print('Média: ',soma / len(x))

Soma: 38.9
Média: 6.483333333333333

Outros métodos como o count () (conta o niimero de ocorréncias de um dado valor), reverse() (ordena
a lista em ordem reversa a ordem original), clear() (limpa todos os dados da lista), copy() (copia todos
os dados da lista), insert () (insere um elemento em uma posigdo especifica da lista) e pop() (remove
um elemento em uma posicdo especifica) como apresentado no script a seguir.

L=1[1, 2,3, 5,7, 2, 4.5]

print ('Quantos 2: ',L.count(2))
print('Qantos 2.1: ',L.count(2.1))
L1 = L.copy()

L.reverse()

print ('L Reverso: ',L)

L.clear()

print('L Vazio: ',L)

print('L1: ',L1)

1.4. LISTAS, TUPLAS, CONJUNTOS E DICIONARIOS 13

L1l.insert(1, 3) # insere o valor 3 na posigdo 1
print ('Ll com + 3 na pos. 1: ',L1)

L1.pop(1l) # retira o elemento 3 da posigdo 1
print('Ll sem o elemento da pos. 1 (3): ',L1)

Quantos 2: 2

Qantos 2.1: O

L Reverso: [4.5, 2, 7, 5, 3, 2, 1]

L Vazio: []

Li: [1, 2, 3, 5, 7, 2, 4.5]

L1 com + 3 na pos. 1: [1, 3, 2, 3, 5, 7, 2, 4.5]

3
L1 sem o elemento da pos. 1 (3): [1, 2, 3, 5, 7, 2, 4.5]

Podemos construir uma matriz, haja vista que Python nao possui um objeto matricial, usando uma lista.
Se criarmos uma lista de n componentes, com cada um dos componentes tendo m componentes, teremos
uma matriz n X m. Vejamos no script a seguir a construcao da seguinte matriz:

1 4
A=|2 5 |. (1.1)
36

O script correspondente a matriz definida em (Equation 1.1) é:

A = [[1,4],[2,5],[3,6]]
print('A = ',A)

A= [[1, 41, [2, 5], [3, 6]]

Vamos apresentar também alguns detalhes extras para acessarmos os valores de uma lista. Podemos
acessar o valor de uma lista x indicando a posicdo do elemento que queremos acessar da seguinte forma:
x[i], em que i representa um valor inteiro entre 0 e len(x)-1, digamos n-1. Para acessarmos um
subconjunto de uma lista L de tamanho n, podemos usar o seguinte comando L[m:s] que ird acessar os
elementos da posi¢do m até a posicdo s-1 e ndo s. Se os indices sdo negativos, entdo a lista serd acessada
de tras para frente, sendo que -1 corresponde a posicdo n-1, -2 a posi¢do n-2 e assim sucessivamente até
-n, que corresponde a posi¢ao 0. Veja alguns exemplos no script a seguir.

L=1[, 2, 3, 4,5, 6, 7]
1L,
(1, 2, 3, 4, 5, 6, 7]

Acessando posicoes em particulares, para impressao ou para atribuicao:

L[0]
L[1] =8
IL,

1
[1, 8, 3, 4, 5, 6, 7]
Acessando, posi¢oes com os indices negativos.

L[-1] # posigdo n-1
L[-len(L)] # posigdo O

14 CHAPTER 1. INTRODUCAO AO PYTHON

7
1

Para blocos de elementos temos que o comando L{m:s:r] acessa os elementos nas posi¢oes m, m+1+r,
m+1+2r, ... até a (s-1)-ésima posi¢do ou até a posicdo mais proxima de s-1 possivel. Muito cuidado
deve ser tomado, pois o limite, superior ndo indica onde o subconjunto termina entre os indices validos de
uma lista e sim,que ela termina na posi¢ao destacada subtraida de 1.

L[1:4]

L[1:23] # passa do limite len(L)

L[0:5:2]

L[-1:-8:-1]

L[4:]

L[:6]

[8, 3, 4]

[8, 3, 4, 5, 6, 7]
[1, 3, 5]

(7, 6, 5, 4, 3, 8, 1]
(5, 6, 7]

(1, 8, 3, 4, 5, 6]

Se omitirmos os limites inferior ou superior da sequéncia, entdo a lista selecionada sera iniciada no indice
0 (valor inicial) ou terminard no ultimo indice (valor final da lista), como nos dois dltimos exemplos
apresentados.

1.4.2 Tuplas

As tuplas sdo objetos Python muito parecidos com as listas. Véarios métodos e fungdes que se aplicam
as listas também se aplicam as tuplas. Ao contrario das listas, as tuplas s@o objetos imutaveis, ou seja,
uma vez criadas elas ndo podem ser modificadas. Assim, se criarmos uma tupla por t = (1,2,3) néo
poderemos atribuir valor, por exemplo, deste jeito t [1] = 9. Elas podem conter mais de um valor idéntico
e sdo ordenadas, como as listas. A forma de criar a tupla em relacdo a lista é o uso dos parénteses no
lugar dos colchetes.

t = (1, 2, 'DFF', 3)
'DFF' in t

t[2]

t [0]

t[:3]

len(t)

True

'DFF'

1

(1, 2, 'DFF')

4

1.4. LISTAS, TUPLAS, CONJUNTOS E DICIONARIOS 15

Os métodos count () e index podem ser usados nas tuplas, como ilustrado a seguir. O método index()
tem a seguinte sintaxe, sendo que os dois ultimos argumentos sao opcionais: tuple.index(element,
start, end).

t.count (1) # ntmero de ocorréncia de 1
t.index('DFF') # indice da posigdo de 'DFF'

1
2

A tupla pode ter qualquer tipo como sendo seus elementos, incluindo uma tupla ou uma lista.

t1 = ((1,2),'r", [2,3,4])

t1

print ('Componente lista da tupla ',t1[2])

print ('Elemento O do componente lista da tupla ',t1[2][0])
t1[2] . append(5)

print('Modificando o componente lista da tupla ',tl)

t2 = [1,2,3]

print('Soma de t2: ',sum(t2))

a, 20, 'r', [2, 3, 4]

Componente lista da tupla [2, 3, 4]

Elemento O do componente lista da tupla 2

Modificando o componente lista da tupla ((1, 2), 'r', [2, 3, 4, 5])
Soma de t2: 6

A questao é: por que devemos usar tuplas, se elas ndo podem ser modificadas? A resposta para isso vem
do fato de que a manipulacao de dados via tuplas que sdo imutaveis é muito mais rapida do que nas listas.
Apesar da tupla apontar para a mesma identificacdo da meméria, fomos capazes de modificar um de seus
elementos, que era a lista na sua segunda posi¢do. Isso ndo mudou a identificacdo na memoria para a qual
a tupla t1 apontava.

Existem muitos métodos ou fungoes que funcionam com as tuplas como o len(t) e o count() como
ilustrado a seguir.

t = (1,1,2,3,3,3,4,5)
print ('Namero de 3: ',t.count(3))
print ('Tamanho de t: ',len(t))

Nimero de 3: 3
Tamanho de t: 8

A funcio any(t) retorna True se ha algum item True na tupla e retorna False, caso contrario. Neste caso,
a tupla ou qualquer outro tipo apropriado podera ter elementos 0 e 1 ou booleanos. Pode ser aplicada nas
listas, conjuntos e nos diciondrios.

t = (True, False, False,False,True)
any (t)

True

Podemos usar ainda as func¢des min(), max(), sum() e sorted(), como ilustrado a seguir. A fungao
sorted() ordena a tupla e retorna uma lista ordenada como resultado. Veja que o método lista.sort()
altera o objeto lista e nao pode ser aplicado na tupla, pelo fato de a tupla ser imutavel.

16

t =(2.3,4.5,1.2,1.1,9.7,5.3)

print('Min.: ',min(t))
print('Max.: ',max(t))
print('Soma: ',sum(t))

print('T ordenado: ',sorted(t))
print('T original: ',t)

Min.: 1.1

Max.: 9.7

Soma: 24.099999999999998

T ordenado: [1.1, 1.2, 2.3, 4.5, 5.3, 9.7]
T original: (2.3, 4.5, 1.2, 1.1, 9.7, 5.3)

1.4.3 Conjuntos

CHAPTER 1. INTRODUCAO AO PYTHON

Os conjuntos set em Python tem uma conotacdo muito proxima com a definicdo de conjuntos da
matematica. Esses sdo conjuntos que a ordem ou duplicacdo de seus elementos ndo mudam o conjunto.
Assim, sao imutéaveis, ndo ordenados e nao pode ter mais de um elemento idéntico em suas ocorréncias.
Podemos usar o construtor (fungéo) set() para criar um conjunto ou usarmos as chaves{} para digitar

seus elementos separados por virgula.

phi = set()

print('Conjunto vazio: '

, phi)

precisa ser uma lista ou tupla de argumento

A = set(['A','D','B','C','E'])

print('A: ',A)

B = {1,2,3.4,5,6,6%}

print ('Elemento "A" pertence a A: ','A'

print('B: ',B) # repare que o elemento
#repetido 6 aparece 1 vez apenas

print (B[0])

in A)

Conjunto vazio: set()

A: {ICI, IDI, IAI, IBI, IEI}
Elemento "A" pertence a A: True
B: {1, 2, 3.4, 5, 6}

TypeError: 'set' object is not subscriptable
TypeError
Cell In[35], line 10

8 print('B: ',B) # repare que o elemento

9 #repetido 6 aparece 1 vez apenas
---> 10 print(B[0])
TypeError: 'set' object is not subscriptable

Traceback (most recent call last)

Nao podemos acessar um elemento de um conjunto por B[0], por exemplo, o que ocasiona um erro, como
pode ser visto no resultado do script anterior. A ordem néo é importante. Vejamos a comparagao do
conjunto A anterior com o novo conjunto C criado a seguir.

C = Set(['A','B','C','D','E'])

print('C: ',C)
print('A: ',A)
print('A=C: ',A == C)

1.4. LISTAS, TUPLAS, CONJUNTOS E DICIONARIOS 17

C: {ICI’ |Dl’ IAI’ IBI’ IEI}
A: {Icl, IDI, IAI, IBI, IEI}
A=C: True

Algumas operagoes matematicas com conjuntos estao disponiveis em Python, como unido, intersegao,
diferenca (A° N B) e diferenga simétrica ((A°N B) U (AN B¢)), como ilustrados no exemplo a seguir.

A={1,2,3,4,5,6}

B = {4,5,7,8,9,10}

print('A: ',A)

print('B: ',B)

print('A U B: ',A.union(B))

print('AB: ',A.intersection(B))

print('A-B: ',A.difference(B)) # esta em A, mas n&o em B
print('B-A: ',B.difference(A)) # estd em B, mas n&o em A
print('Dif. simétrica: ',A.symmetric_difference(B)) # estid sbé em A ou s6 em B
print('AB: ',A & B) # interseccgio

print('A U B: ',A | B) # unido

print('A-B: ',A - B) # diferenca

print('B-A: ',B - A) # diferenca

print('dif. Sim.: ',A"B) # diferencga simétrica

A: {1, 2, 3, 4, 5, 6}

B: {4, 5, 7, 8, 9, 10}

AUB: {1, 2, 3, 4, 5,6, 7,8, 9, 10}
AB: {4, 5%}

A-B: {1, 2, 3, 6}

B-A: {8, 9, 10, 7}

Dif. simétrica: {1, 2, 3, 6, 7, 8, 9, 10}
AB: {4, 5}

AUB: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
A-B: {1, 2, 3, 6}

B-A: {8, 9, 10, 7}

dif. Sim.: {1, 2, 3, 6, 7, 8, 9, 10}

1.4.4 Dicionarios

Os dicionérios dictionary() sdo objetos mutaveis e iteraveis. Os seus elementos vem sempre aos pares,
sendo o primeiro valor uma chave e o segundo elemento, o valor da chave. Tanto a chave quanto o seu
valor sdo objetos Python. A chave é imutdvel, mas seus valores associados sao objetos mutéveis ou néo.

D ={1: [1,2,3.4,5], 2: 3.7, 3: {1,2,3}}
D[1]

D[2]

type(D[31)

type(D[1])

[1, 2, 3.4, 5]

3.7

set

list

Temos um dicionario, com as chaves 1, 2 e 3. Para a chave 1 temos uma lista como seu valor, para a chave

18 CHAPTER 1. INTRODUCAO AO PYTHON

2, temos um valor float e para a chave 3, criamos um objeto do tipo conjunto. A seguir, acrescentamos
uma chave, nomeada 4 com um valor booleano associado. O método keys () recupera as chaves do objeto
diciondrio D, transforma numa lista e imprime a lista e seu primeiro elemento C[0].

D[4] = True

print (D)

C = list(D.keys())
print (C)

clol

{1: [1, 2, 3.4, 5], 2: 3.7, 3: {1, 2, 3}, 4: True}
[1’ 2’ 3, 4]

1

Do mesmo modo, podemos obter os valores das chaves facilmente, como ilustrado a seguir. Posteriormente,
veremos como poderemos utilizar uma estrutura de repeticao for para percorrer os elementos do dicionario
e armazenar os valores em uma lista ou processa-los um a um.

print('D: ',D)

print('Valores de D: ',D.values())

print('Lista dos valores de D: ',list(D.values()))

print('D[C[0]]: ',D[C[0]]) # acessando o valor com chave 1, C[O]

print('C[0] pertence a D: ',C[0] in D) # verificando se chave 1 pertence a D
print('5 pertence a D:',5 in D) # verificar se a chave 5 pertence a D

D: A{1: [1, 2, 3.4, 5], 2: 3.7, 3: {1, 2, 3}, 4: True}

Valores de D: dict_values([[1, 2, 3.4, 5], 3.7, {1, 2, 3}, Truel)
Lista dos valores de D: [[1, 2, 3.4, 5], 3.7, {1, 2, 3}, Truel]
p[cfol]: [1, 2, 3.4, 5]

C[0] pertence a D: True

5 pertence a D: False

Podemos deletar o contetido de uma chave, usando a funcao del ou usando o método pop (). Podemos
atualizar o dicionario, criando novas chaves e valores, com o método update.

del D[3] # elimina a chave 3

D

D.pop(4) # elimina a chave 4

D

D.update({5: 'sou novo', 6:'eu também'})
D

{1: [1, 2, 3.4, 5], 2: 3.7, 4: True}

True

{1: [1, 2, 3.4, 5], 2: 3.7}

{1: [1, 2, 3.4, 5], 2: 3.7, 5: 'sou novo', 6: 'eu também'}

Podemos criar um objeto dicionario, criando duas tuplas, digamos ¢ e v, com as chaves e com os valores
das chaves (de mesmo tamanho). Em seguida emparelhamos os elementos com o comando zip(c, v).
Finalmente, usamos a funcao dict para criar o dicionédrio dos valores emparelhados.

(1,2,3,4) # chaves
([1,2],True,4.5,('r','s"))
dict(zip(c,v))

C
v

y

1.5. MATRIZES E ARRANJOS 19

y

y.get (5, 'Chave ndo existe')

get() ndo gera erro em chave inexistente
mas, y[6] geraria erro

y.get (1)

y[1]# como 1 existe, é equivalente ao get()

{1: [1, 2], 2: True, 3: 4.5, 4: ('r', 's")}
'Chave ndo existe'

[1, 2]

[1, 2]

Assim, tendo acesso a um valor da lista, podemos usar os métodos e fun¢oes apropriadas para lidarmos com
eles. Mais detalhes destes objetos, aparecerao oportunamente, quando avangarmos em mais caracteristicas
da programacao em Python.

1.5 Matrizes e Arranjos

As matrizes em Python, como dissemos e mostramos anteriormente, podem ser criadas pelas listas. Assim,
vamos criar a seguir uma matriz 2 X 2 usando list para ilustrarmos o procedimento de criagdo. Se a
dimensao for uma sé, as listas sdo arranjos de uma dimensao, conhecidas por vetores.

A= [[4,1]1,01,1]] # matriz 2 x 2
print('A = ',A)

A[1][1] # retorna o valor A[2,2]
Al11[1] = 2 # altera o seu valor
A

A= [[4, 11, [1, 11]
1
(f4, 11, [1, 211

Para lidarmos com fungdes vetoriais (arrays) ou matriciais, podemos, entre outras possibilidades usar a
biblioteca (pacote) numpy. Nosso primeiro passo é importar o pacote numpy com o apelido, np, que é o
mais usado, para facilitar a chamada de seus métodos e fungoes. Isso s pode ser feito, se ja tivermos
instalado o pacote numpy.

del numpy # eliminar a dltima importacgédo
import numpy as np

Em seguida, criamos uma matriz com o uso da fun¢do array(). Vamos usar nossa lista A anterior, para
fazer isso.

B = np.array(A)
B

array([[4, 1],
[1, 211

Podemos criar também a partir de tuplas, em vez de listas, a matriz numpy. Além disso, existem fungoes
proprias do pacote para criarmos matrizes, como, por exemplo, a matriz de zeros 2 X 4 a seguir. Também
existem fungoes para criarmos arrays (vetores) unidimensionais, como o método arange () e o linspace().
O primeiro cria um vetor indo de n até o maximo m (inteiros) sem inclui-lo de 1 em 1, ou do minimo n até

20 CHAPTER 1. INTRODUCAO AO PYTHON

0 méximo m (excluindo o mdximo) de r em r: arange(n,m) ou arange(n,m,r). Ji o linspace(n,m,s)
inicia em n, finaliza em m, mas com passo iguala (m - n) / (s - 1).

C = np.zeros((2,4))

print (C)

np.arange(2,7) # vetor com elementos 2,3,..,6
np.arange(2,7,0.5) # de 2 até 7, de 0.5 em 0,5 (exceto o 7)
np.linspace(2,6,6)

array([2, 3, 4, 5, 6])
array([2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. , 6.5])
array([2. , 2.8, 3.6, 4.4, 5.2, 6. 1)

Vamos ilustrar alguns calculos simples com vetores.
x = np.arange(2,3,0.2)
y = np.arange(3,6,0.7)
print('', x,'"\n', y)
X + y # adigdo dos vetores
X * y # produto elementwise
y ** x # potenciacdo elementwise
2. .4 2.6 2.8]
[3. 3.7 4.4 8]
array([5. , 5.9, 6.8, 7.7, 8.6])
array([6. , 8.14, 10.56, 13.26, 16.24])

array([9. , 17.78458735, 35.01760371, 69.132563113,
137.27719037])

A multiplicagdo de matrizes por sua vez pode ser feita com a func¢do np.dot, que tem uma versao na
forma de método também, ndo modificando o objeto que o acionou.

C = np.array([[2,1],[1,2]1])
print('B: ',B)

print('C: ',C)

print('BC: ',np.dot(B,C))
print ('BC: ',B.dot(C))
print('B original: ',B)

B: [[4 1]
[1 2]1]
Cc: [[2 1]
[1 2]]
BC: [[9 6]
[4 5]]
BC: [[9 6]
[4 5]]

B original: [[4 1]
[1 2]]

1.5. MATRIZES E ARRANJOS 21

As inversas podem ser obtidas com a fun¢do np.linalg.inv() e as inversas generalizadas de Moore-
Penrose pelo método numpy.linalg.pinv(). O determinante pode ser obtido por np.linalg.det() e os
autovalores e autovetores (decomposicao espectral) por np.linalg.eig(). E importante observar que os
autovalores do np.linalg.eig() ndo necessariamente estard ordenado do maior para o menor, como ¢é
convencionalmente adotado em diferentes outros programas. Este método é bem geral e pode ser usado
em matrizes reais ou complexas quadradas. Alternativamente, para matrizes simétricas o numpy possui o
método np.linalg.eigh(), que retorna os autovalores em ordem crescente. Veja o exemplo a seguir.

np.linalg.inv(B)

np.linalg.pinv(B) # igual a inversa (posto completo)
np.linalg.det(B)

L, P = np.linalg.eig(B)

print('Autovalores: ',L,'\nAutovetores: ',P)
L1, P1 = np.linalg.eigh(B)
print('Autovalores: ',L1,'\nAutovetores: ',P1)

array([[0.28571429, -0.14285714],
[-0.14285714, 0.57142857]]1)

array([[0.28571429, -0.14285714],
[-0.14285714, 0.57142857]])

6.999999999999999

Autovalores: [4.41421356 1.58578644]

Autovetores: [[0.92387953 -0.38268343]
[0.38268343 0.92387953]1]

Autovalores: [1.58578644 4.41421356]

Autovetores: [[0.38268343 -0.92387953]
[-0.92387953 -0.38268343]]

Também podemos usar a biblioteca scipy com os métodos sp.linalg.eig() e sp.linalg.eigh(), que
fazem exatamente como os seus similares da biblioteca numpy. Para isto devemos importar, depois de
instalada, a biblioteca usando import scipy as sp.

Para matrizes n x m, podemos usar uma decomposicao matricial muito ttil para a estatistica, em métodos
como componentes principais, AMMI, biplot, entre outros. Esse método é chamado de decomposi¢ao
do valor singular. Nele obtemos a decomposicdo de uma matriz A (m x n) da seguinte forma: A =
UAVT, em que o método np.linalg.svd() retorna U uma matriz m x k ortonormal por colunas, V
uma matriz n X k ortonormal por coluna e o vetor correspondente & diagonal de A, que é uma matriz
diagonal k x k de elementos reais positivos, se usarmos a opc¢do full_matrices=False. As matrizes U e
V sao as matrizes dos vetores singulares e a matriz A é a matriz dos valores singulares, sendo k o posto
de A que é k = min(n,m). O script a seguir ilustra a obtencao da decomposi¢do singular de uma matriz
3 x 2.

A = np.array([[1,4],[2,7],[9, 311)
U,L,Vt = np.linalg.svd(A, full_matrices=False)

print('Vetores singulares & esquerda: ',U,
'"\nVetor dos valores singulares: ',L,
'"\nVetores singulares & direita (transposto): ',Vt)

len(L) # posto de A
np.diag(L) # constréi a matriz Lambda

Vetores singulares & esquerda: [[-0.30248631 -0.39963983]
[-0.54614812 -0.67137377]
[-0.78116852 0.62413562]]

22 CHAPTER 1. INTRODUCAO AO PYTHON

Vetor dos valores singulares: [11.19813546 5.88232625]
Vetores singulares & direita (transposto): [[-0.75238412 -0.65872463]
[0.65872463 -0.75238412]1]

2

array([[11.19813546, O. 1,
[0. , b5.88232625]1)
Para verificarmos que a decomposigio realmente é adequada, temos o seguinte script:

print ('ULVt: ',np.dot(np.dot(U,np.diag(L)),Vt))
print ('ULVt: ',U.dot(np.diag(L)).dot(Vt)) # alternativo
print ('ULVt: ',U @ np.diag(L) @ Vt) # alternativo

ULVt: [[1. 4.]

2. 7.1
[9. 3.11
ULVt: [[1. 4.]
[2. 7.1
[9. 3.1]
ULVt: [[1. 4.]
[2. 7.]
[9. 3.11

Muitas outras fungoes existem no pacote numpy para lidarmos ou operarmos matrizes. Se necessitarmos
de alguma outra funcao para alguma operacdo matricial, vamos apresentd-la nestas ocasioes.

1.6 Arquivos de Dados

Usaremos pouco esta estrutura de dados neste material, embora vamos apresentar a biblioteca pandas
para lidarmos com os DataFrames. Iremos apresentar a leitura de um arquivo particular com duas
varidveis X1 e X2, gravado como arquivo texto separado por espago entre as colunas (varidveis). O caminho
onde este arquivo se encontra em meu computador é: g:/Meu Drive/daniel/Cursos/Estatistica
computacional/Apostila/ e seu nome é dados.txt. Devemos inicialmente instalar a biblioteca pandas
com o comando: pip install pandas. Posteriormente, carregamos o pacote pandas, como apresentado
no script a seguir. Para mudar o diretério, precisamos importar o pacote os e usar os.getcwd() para
obter o diretério de trabalho atual e para altera-lo os.chdir (' [path]').

import pandas as pd

import os

apath = os.getcwd() # caminho do projeto

os.chdir('g:/Meu Drive/daniel/Cursos/Estatistica computacional/Apostila/')

os.getcwd ()

'g:\\Meu Drive\\daniel\\Cursos\\Estatistica computacional\\Apostila'

Para lermos um arquivo deste diretério em um objeto DataFrame podemos usar a funcado
pd.read_csv('dados.txt',r'\s+'), cujo simbolo r'\s+' significa que o arquivo é separado por
espagos, podendo variar o ndmero de espagos entre colunas de registro (linha) para registro, ou seja, se o
numero de espagos nao estd padronizado entre as colunas para as diferentes linhas do arquivo de dados.

dados = pd.read_csv('dados.txt',sep=r'\s+')
dados

1.6. ARQUIVOS DE DADOS

X1
0 13.4
1 14.6
2 13.5
3 15.0
4 14.6
5 14.0
6 16.4
7 148
8 15.2
9 15.5
10 15.2
11 16.9
12 14.8
13 16.2
14 14.7
15 14.7
16 16.5
17 154
18 15.1
19 14.2

23

X2

14
15
19
23
17
20
21
16
27
34
26
28
24
26
23
9

18
28
17
14

Os DataFrames sdo estruturas de dados tabular, sendo que cada coluna possui constitui de uma sequéncia
de valores do mesmo tipo (booleano, float, strings, etc.), em que as diferentes colunas podem ser e
potencialmente sdo de diferentes tipos. Os DataFrames possuem uma coluna adicional chamada index
que no exemplo anterior, do objeto dados, variou de 0 a 19, pois nosso DataFrame possui 20 linhas e duas
variaveis X1 e X2, que no arquivo dados.txt estavam identificadas na primeira linha fisica do arquivo que
foi lido pelo método read_csv(). O index mapeia as linhas do DataFrame com os labels mencionados.

Vamos mostrar como construir um DataFrame diretamente a partir de um objeto dict para o construtor
DataFrame() do pandas. Vamos criar um DataFrame de um delineamento inteiramente casualizado, com
2 tratamentos e 3 repetigoes de cada um, com os respectivas produtividades avaliadas nas 6 parcelas

experimentais.
dic = {'rep': [1,2,3,1,2,3],
'trat': [1,1,1,2,2,2],
'prod': [3.4,2.3,5.6,5.7,6.3,7.1]}
arqd = pd.DataFrame(dic)
arqd
rep trat prod
0 1 1 3.4
1 2 1 2.3
2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1

Podemos acrescentar uma nova coluna em nosso DataFrame, ou eliminarmos uma ja existente, criando um
novo DataFrame para receber o resultado, como mostrado a seguir, com a op¢ao columns, para qualquer

ordem das chaves (nomes das colunas).

24 CHAPTER 1. INTRODUCAO AO PYTHON

arqd

arqdl = pd.DataFrame(arqd,columns=['trat', 'prod'])

arqdl # selecionando 2 variaveis no DataFrame

arqd['alt'] = [1.5,1.3,1.4,1.2,1.1,1.6] #criando variavel altura
arqd

rep trat prod

0 1 1 3.4
1 2 1 2.3
2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1
trat prod

0 1 3.4

1 1 2.3

2 1 5.6

3 2 5.7

4 2 6.3

5 2 7.1

rep trat prod alt

0 1 1 3.4 1.5
1 2 1 2.3 1.3
2 3 1 5.6 14
3 1 2 5.7 1.2
4 2 2 6.3 1.1
5 3 2 7.1 1.6

Para acessarmos as chaves (colunas), os {ndices e os valores do DataFrame podemos usar os seguintes
c6digos ilustrativos. Observamos que a instrugdo arqd.prod para acessar a coluna prod, resulta em erro,
pois prod é uma palavra reservada (produto). Devemos usar a alternativa anterior para esta chave.
arqd.columns

arqd.index

arqd.values

arqd['prod'] [0] # produgdo do indice O

arqd['prod'] # toda a coluna de produg&o

arqd.prod # cuidado, pois prod é palavra reservada: erro

arqd.rep

Index(['rep', 'trat', 'prod', 'alt'], dtype='object')
RangeIndex(start=0, stop=6, step=1)

array([[1. , 1. , 3.4, 1.5],
[2. , 1., 2.3, 1.3],

1.6. ARQUIVOS DE DADOS 25

[3. , 1., 5.6, 1.4],
[1. , 2. , 5.7, 1.2],
[2. , 2., 6.3, 1.1],
8., 2., 7.1, 1.6]1)

3.4

0 3.4

1 2.3

2 5.6

3 5.7

4 6.3

5 7.1

Name: prod, dtype: float64

<bound method DataFrame.prod of rep trat prod alt

0 1 1 3.4 1.5
1 2 1 2.3 1.3
2 3 1 5.6 1.4
3 1 2 5.7 1.2
4 2 2 6.3 1.1
5 3 2 7.1 1.6>

g W= O
WNEFE WN =

Name: rep, dtype: int64

Para extrairmos uma linha inteira usamos o método loc do DataFrame associado ao indice da linha
(registro), como ilustrado no script a seguir.

L = arqd.loc[1] # segunda linha do DataFrame
print (L)

L2 = arqd.loc[[0,5]] # as linhas 1 e 6 de arqd
L2 # com os indices 0 e 5

rep
trat
prod
alt .
Name: 1, dtype: float64

=N =N
W w o o

rep trat prod alt

0 1 1 3.4 1.5
5 3 2 7.1 1.6

Para selecionar um bloco de registros (linhas) indo de inicio ao fim (excluindo o limite final) usamos
arqd[inicio:fim]. Como ilustrado a seguir, onde extraimos do indice 0 até o indice 3, ou seja, as trés
primeiras linhas com os indices 0, 1 e 2 do arqd.

26 CHAPTER 1. INTRODUCAO AO PYTHON

arqd[0:3]

rep trat prod alt

0 1 1 3.4 1.5
1 2 1 2.3 1.3
2 3 1 5.6 1.4

Valores perdidos podem fazer parte do DataFrame e neste caso, eles assumem o valor NaN, do inglés not
a number. Podemos deletar uma coluna com o comando del, da seguinte forma.

del arqd['alt']

arqd

rep trat prod

0 1 1 3.4
1 2 1 2.3
2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1

Podemos filtrar impondo condicoes especificas ao DataFrame. Por exemplo, se estivermos interessado no
DataFrame resultante dos elementos em que a produgao é maior ou igual a 5, teremos o seguinte resultado.
O resultado filtrado mostra os registros nas mesmas posi¢des originais e o seu DataFrame original arqd
permanece inalterado.

arqd[arqd['prod'] >= 5.0]
arqd

rep trat prod

2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1
rep trat prod
0 1 1 3.4
1 2 1 2.3
2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1

Para gravarmos um DataFrame podemos escolher o diretério (pasta) e o nome do arquivo e gravarmos em um
arquivo csv (arquivo separado por virgula) com o comando arqd.to_csv('nome.csv,index=False,header=True)
para nao salvar o indice e salvar o cabecalho. Vamos recuperar em nosso c6digo, o path original com o

1.7. ESTRUTURAS DE CONTROLE DE PROGRAMACAO 27

comando os.chdir(apath), em que apath foi obtido quando iniciamos o assunto sobre DataFrame e
refere-se ao diretério deste projeto. Escolhemos o nome dic.csv para o arquivo. Podemos ler o arquivo
novamente, conforme mostramos nos primeiros passos da abordagem dos DataFrames. Depois de gravado,
repetimos sua leitura e o colocamos no objeto dic, em que devemos atentar para o separador de colunas,
que neste caso é a virgula.

os.chdir(apath)
arqd.to_csv('dic.csv',index=False,header=True)
dic = pd.read_csv('dic.csv',sep=r',")

dic

rep trat prod

3.4
2.3
5.6
5.7
6.3
7.1

Uk W N~ O
W N W =
NN ===

Em futuras edi¢oes, mostraremos mais detalhes dos DataFrames. Nos capitulos posteriores, caso venhamos
a precisar de um DataFrame e de algumas de suas propriedades, entdo iremos adicionar os contetdos
necessarios nesta ocasido. Falaremos agora das estruturas condicionais e as estruturas de repetigoes.

1.7 Estruturas de Controle de Programacao

O Python é um ambiente de programagdo em que programas contém os moédulos, os médulos contém
instrucdes, as instrugdes contém comandos e as expressoes criam e processam os objetos. Estas instrugoes
sdo as atribuigdes tipo a=b, a chamada de métodos e fungoes como print(a), if/elif/else para selecao
de agoes, o for/else para realizar iteragoes, o while/else para loops em geral, break e continue para
controle de loops, def para defini¢bes de fungdes, yield para gerador de fungdes, entre outros. As
instrugoes sdo organizadas em expressoes em grupos de comandos, que diferentemente de outras linguagens
sdo organizados pelas indentagoes (recuo do pardgrafo). Assim, o corpo ou grupo de comando de uma
instrucéo especifica, ficard reunida se elas tiverem indentadas em relacdo a instrucdo principal e com
o mesmo nivel de indentagdo. Em outra linguagens os grupos de comandos sao reunidos pelas chaves:
{grupos de comandos}. O fim de uma linha termina a instrugio, que também pode ser finalizada por
um ponto e virgula. Uma instrug¢do pode continuar em uma nova linha se a linha terminar com o \ ou
com o uso dos parénteses.

O nome das variaveis em Python devem iniciar com underscore ou letra, seguido por niimeros ou letras
ou underscore. O python diferencia as maitsculas das mintsculas, assim Y é diferente de y. Os nomes
devem evitar as palavras reservadas do Python, como False, None, True, class, and, if, elif, yield, while,
break, global, nor, try, return, break,in, etc. Por convencao, as classes em Python comecam com maitsculo
e os modulos e nomes de variaveis por mintusculo.

As estruturas condicionais, if/elif/else sao estruturas em Python para selecionar agbes. Esta instrucao
pode conter outras instrugoes do mesmo tipo ou diferentes instrucées em seus grupos de comando. O
formato geral é dado por
if condigdol:

instrugdesil
elif condig8o2: # opcional elifs

instrugdes?

28 CHAPTER 1. INTRODUCAO AO PYTHON

else: # opcional else
instrugdes3

A instrugdo elif significa else if e é opcional. Se a condig&ol for verificada, é executado o bloco
denominado instrugdesi, que estdo indentados em relagdo ao if. Caso a condigdo seja falsa, é testada a
condic&o?2 e se ela for verdadeira, sdo executados as instrugoes denotadas por instrugdes2, que pode ser
uma simples instrucao ou varias instrugdes, indentadas em relagdo ao elif. Finalmente, se a condig&o2
for falsa sdo executadas as instrugdes3. Cada linha das instrugoes if, elif ou else sdo seguidas por
dois pontos. Veja o exemplo simples a seguir.
x =5
if x > 6:

print ('Recebe mais que 6 salarios.')

print('Vocé esta entre os 20% mais ricos!')
else:

print('Vocé recebe 6 saldrios ou menos.')

print('Vocé representa 80% da populagio!')

Vocé recebe 6 saldrios ou menos.
Vocé representa 80% da populag&o!

Para um modelo probabilistico temos o seguinte modelo para a funcao de distribuigao:

0 sex<0
Fx(@)={ 2% se0<z<1
1 se x> 1.

Para este modelo, temos o seguinte script, no qual decidimos qual parte do programa rodar, conforme os
valores de x sdo atribuidos.
x = 0.8
if x < 0O:
F=20
elif 0 <= x <= 1:
F = x*%*2
else:
F=1
F

0.6400000000000001

As estruturas de repeticdo do Python sdo o for e o while/else. Existe ainda um terceiro tipo de
procedimento em Python para realizarmos iteragdes. A estrutura geral de um cédigo Python para o for é
apresentada no script a seguir.

x = [1,2,3,4,5,6]

for i in x:
instrugoesl

else: # opcional instrucgéo else
instrugdes?2

Os objetos (x) do comando for sao os objetos iteradores ou iterdveis, que sdo aqueles que contém um
numero contaveis de valores. As listas, tuplas, dicionarios e conjuntos ao todos objetos iterdveis. Vamos
ilustrar com um simples exemplo a seguir, para calcularmos a soma, o produtério e a média de uma lista
de valores.

1.7. ESTRUTURAS DE CONTROLE DE PROGRAMACAO 29

x = [2.3, 4.1, 1.5, 2.3, 4.7]
soma = 0
prod = 1
n = len(x)
for y in x:

soma = soma + Yy

prod = prod * y
media = soma / n

print('A soma é: ',soma)
print('0 produtério é: ',prod)
print('A média é: ',media)

A soma é&: 14.899999999999999
0 produtério é: 152.90744999999995
A média é&: 2.9799999999999995

Para realizarmos itera¢des em um dicionério, temos o seguinte exemplo:

D={1: 1.3, 2: 3.1, 3: 1.7}
for i in D: # iterar nas chaves
print(i, ' e ', D[il)
print ('Agora iterando nas chaves e valores:')
for (i, valor) in D.items():

print(i, ' e ', valor) # iterar em chave e valor
1 e 1.3
2 e 3.1
3 e 1.7
Agora iterando nas chaves e valores:
1 e 1.3
2 e 3.1
3 e 1.7

Finalmente, um exemplo em um conjunto:

A=4{1.1,2.2,3.4,4.7,5.3%}
for i in A:

print('elemento: '

,1)

elemento: 1.1
elemento: 2.2
elemento: 3.4
elemento: 4.7
elemento: 5.3

Podemos criar um sequéncia de valores com o comando range(n) que vai de 0 a n-1. Assim, também
podemos usar o for nessa sequéncia, como ilustrado no exemplo a seguir.

x = [2.3, 4.1, 1.5, 2.3, 4.7]
soma = 0
n = len(x)
for i in range(n):
soma = soma + x[i]
media = soma / n
print('A soma é: ',soma)

30 CHAPTER 1. INTRODUCAO AO PYTHON

print('A média é: ',media)

A soma é&: 14.899999999999999
A média é: 2.9799999999999995

O while é uma outra estrutura de repeticdo, em que o bloco de comandos indentados irdo ser executados
até que uma condicdo seja satisfeita. A estrutura geral é dada a seguir.
while condigdo:
instrugoesl
else: # opcional instrugdo else
instrugdes?2

O exemplo a seguir, ilustra o célculo do total e da média de uma lista.

x = [2.3, 4.1, 1.5, 2.3, 4.7]

soma = 0
n = len(x)
i=0

while i < n:
soma = soma + x[i]

i=1i+1
media = soma / n
print('A soma é: ',soma)
print('A média é: ',media)

A soma é&: 14.899999999999999
A média é: 2.9799999999999995

Podemos usar os comandos break e continue dentro do while (ou do for). O break é usado apds uma
segunda condigao ser verificada no bloco de comandos do interior da estrutura de repeticao e pula a
execucdo do programa para a primeira linha de instrugdo apds o bloco do loop, ou seja, encerra o loop.
O continue executa a primeira linha testando a condi¢do primaria do while ou tomando o préximo valor
do iterador no for, ou seja, vai para o inicio do loop. Veja o exemplo a seguir.

y = 35 # experimente outro numero inteiro > 1
x=y// 2
while x > 1:
if y % x ==
print(y, 'tem fator ', x)
break

x=x -1
else:
print(y,' & primo')

35 tem fator 7

Podemos utilizar a funcdo filter, como j4 ilustramos anteriormente neste material, para realizarmos
iteragoes em nosso cdédigo. Nao daremos mais detalhes disso, por enquanto.

1.8 Funcoes

As fungbes em todas as linguagens sdo uma poderosa ferramenta de programacao, que nos permite quebrar
um grande problema em pequenas tarefas (as fungoes), facilitando assim a resolu¢do do problema como
um todo. Dizemos que é a estratégia de dividir para conquistar. As fungoes em geral recebem um objeto

1.8. FUNCOES 31

e o processa de acordo com as regras definidas em seu bloco de comando. Desta forma a linguagem
ganha grande poder, conveniéncia e elegancia. O aprendizado em escrever fungoes tteis é uma das muitas
maneiras de fazer com que o uso do Python seja confortavel e produtivo. A sintaxe geral de uma funcao é
dada por:

def nome(argl, arg2,...,argn):
instrugdes

As instrugoes significam um bloco de comandos (indentados) e podem ou nao ter o comando return
objeto, que pode acontecer em qualquer parte do bloco de comandos. A funcdo pode néo ter este
comando de return, se ela modificar um arquivo apenas gravando um novo resultado ou se imprimir uma
mensagem quando chamada. Os argumentos ou pardmetros sao passado para a fungdo e a sua chamada
deve obedecer estritamente a ordem em que eles aparecem, a menos que a chamada seja com chave, ou
seja, do tipo argl = 2.3, por exemplo. Neste caso, os argumentos podem ser colocados em qualquer
ordem. Os argumentos de uma funcao podem conter valores default, ou seja, na declaracdo do nome
da func¢do podemos ter algo do tipo: def nome(x, theta = 0.5). O argumento theta=0.5 pode ser
omitido na chamada da funcéo, que serd atribuido seu valor 0,5 padrao.

Vamos apresentar uma funcao simples para testar a hipotese Hg : u = pg a partir de uma amostra simples
de uma distribui¢do normal. Dois argumentos serdao utilizados: o vetor (lista) de dados = de tamanho n e
o valor real hipotético . A fungdo calculara o valor da estatistica t. do teste por:

(1.2)

A funcio resultante, em Python, é apresentada a seguir. Neste exemplo uma amostra de tamanho n = 8 foi
utilizada para obter o valor da estatistica para testar a hipétese Hp : u = 3,0 (se a amostra era proveniente
do povo na’vu). Podemos observar que o resultado final da fungéo é igual ao do dltimo comando executado,
ou seja o valor da estatistica e do valor-p, por meio de um objeto do tipo dicionario. Esta funcao utiliza no
seu escopo trés fungoes do Python (fungoes bésicas do numpy), ainda ndo apresentadas. As duas primeiras,
var () e mean() retornam a varidncia e a média do vetor utilizado como argumento, respectivamente, e a
terceira, pt (), retorna a probabilidade acumulada da distribuigdo ¢ de Student para o primeiro argumento
da funcao com v graus de liberdade, que é o seu segundo argumento.

import scipy as sp # para calcular probabilidade da t
def t_test(x, muO):
n = len(x)
s2 = np.var(x,ddof=1) # ddof=1, divisor n-1 para s2
xb = np.mean(x)
t = {'tc':0,'p.val':0}
tl'tc'] = (xb-mu0) / (s2 / n)**0.5
tl'p.val'] = 2x(1-sp.stats.t.cdf(abs(t['tc']),n-1))
return t
y=[1.76,1.81,1.74,1.71,1.79,1.75]

t = t_test(y, 3.0) # altura de avatares
print('tc = ',t['tc'])

print('p.val = ',t['p.val'l])

tc = -84.89699641330068

p.-val = 4.297311617662558e-09

Podemos reescrever esta fungao para colocarmos um valor default para o argumento mu0. Se escolhéssemos
o valor 0 e em alguma chamada da funcao, esse argumento fosse omitido, seria feito o teste da hipdtese
Hy : p = 0 por padrao.

32 CHAPTER 1. INTRODUCAO AO PYTHON

def t_test(x, mu0 = 0):
n = len(x)
s2 = np.var(x,ddof=1) # ddof=1, divisor n-1 para s2
xb = np.mean(x)
t = {'tc':0,'p.val':0,'S2"': s2, 'xbar': xb}
t['tc'] = (xb-mu0) / (s2 / n)**0.5
t['p.val'] = 2x(1l-sp.stats.t.cdf(abs(t['tc']),n-1))
return t
y [1.76,1.81,1.74,1.71,1.79,1.75]
t = t_test(y) # teste HO: mu0O=0
print('tc = ',t['tc'])
print('p.val = ',t['p.val'l)
print (list(t.items()) [2:4])

tc = 120.49896265113645
p.val = 7.465636997494585e-10
[('S2', 0.001280000000000002), ('xbar', 1.76)]

Vamos realizar um teste para a correlacdo em populacdes normais bivariadas. Assim, dado o par de
varidveis vetoriais x e y tomados em n individuos, temos a hipdtese nula

H()Zp:O

e a estatistica do teste sob Hy dada por

; rvn —2
SV =l

em que 7 € o coeficiente de correlacdo amostral entre X e Y; e n é o tamanho da amostra. Sob Hy, essa
estatistica segue a distribuicdo t de Student com v = n — 2 graus de liberdade.

A funcao deve receber os vetores x e y e retornar o resultado do teste: estatistica e valor-p. Pode-se
utilizar a funcdo cor do Python scipy para obter a correlacdo entre x e y.

def cor_test(x, y):
n = len(x)
if n != len(y):
print('Listas devem ter o mesmo tamanho!')
return
r = np.corrcoef (x,y) [0,1]
t = {'tc':0,'p.val':0,'r': r}
t['tc'] = r * (n-2)**0.5 / (1 - r**2)*%0.5
t['p.val'] =2*(1-sp.stats.t.cdf(abs(t['tc']),n-2))
return t
x = [1, 2, 3.1, 4.2]
y = [2.1, 3.9, 6.1, 8.3]
t = cor_test(x, y)
print('tc = ',t['tc'])
print('p.val = ',t['p.val'l])
print('r = ',t['r'])

1.9. ESTATISTICA COMPUTACIONAL 33

tc = 58.469836352468235
p.-val = 0.0002923787083537466
r = 0.9997076212916461

Finalmente, vamos obter uma funcao para obtermos poténcias reais de matrizes quadradas simétricas
positivas definidas. Consideremosuma matriz A simétrica e positiva definida:

A =PAPT,

entdao a poténcia de ordem a € R é dada por

A® =PA°PT.

Deve receber A e retornar A¢. O script a seguir ilustra uma fungdo para obtermos estas poténcias
matriciais. Observe que ndo é uma poténcia elemento a elemento. Também devemos observar que nao
é importante que os autovalores estejam ordenados. Mas é 6bvio que os autovetores associados a cada
autovalor deve estar corretamente associado e preservado e isso ¢é feito pela biblioteca numpy por meio da
funcgao eig().

def mat_power (A, alpha = 0.5):
e_val, e_vec = np.linalg.eig(A)
if any(e_val) < O:
print('Matriz nd3o é positiva definida!')
return
Ap = e_vec.dot(np.diag(e_val*+*alpha)).dot(np.transpose(e_vec))
return Ap
A= [[4,1],[1,2]]
print('A = ',A)
print('A~(1/2): ',mat_power(A)) # raiz quadrada
A3 = mat_power (A, 1/3) # raiz cibica
print('A"(1/3): ',A3)
print (A" (1/3)A"(1/3)A"(1/3): ',A3.dot(A3).dot(A3)) # verificando

A= [[4, 11, [1, 2]]

A~(1/2): [[1.97773553 0.29759397]
[0.29759397 1.38254759]]

A~(1/3): [[1.57094963 0.16768037]
[0.16768037 1.23558888]1]

A~(1/3)A™(1/3)A™(1/3): [[4. 1.]
(1. 2.11

1.9 Estatistica Computacional

Os métodos de computacao intensiva tém desempenhado um papel cada vez mais importante para resolver
problemas de diferentes areas da ciéncia. Vamos apresentar algoritmos para gerar realizagoes de variaveis
aleatérias de diversas distribuicoes de probabilidade, para realizar operagoes matriciais, para realizar
inferéncias utilizando métodos de permutacéo e bootstrap, etc. Assim, buscamos realizar uma divisao
deste material em uma secao béasica e em outra aplicada. As técnicas computacionais sdo denominadas
de estatistica computacional se forem usadas para realizarmos inferéncias, para gerarmos realiza¢oes de
variaveis aleatorias ou para compararmos métodos e técnicas estatisticas.

34 CHAPTER 1. INTRODUCAO AO PYTHON

Vamos explorar métodos de geragao de realizagoes de variaveis aleatérias de diversos modelos probabilisticos,
para manipularmos matrizes, para obtermos quadraturas de fungoes de distribuicdo de diversos modelos
probabilisticos e de fungGes especiais na estatistica e finalmente vamos apresentar os métodos de computagao
intensiva para realizarmos inferéncias em diferentes situagoes reais. Temos a intenc¢ao de criar algoritmos
em linguagem Python e posteriormente, quando existirem, apresentar os comandos para acessarmos os
mesmos algoritmos ja implementados.

Vamos apresentar os métodos de bootstrap e Monte Carlo, os testes de permutagdao e o procedimento
jackknife para realizarmos inferéncias nas mais diferentes situagoes reais. Assim, este curso tem basicamente
duas intengdes: possibilitar ao aluno realizar suas préprias simulagoes e permitir que realizem suas
inferéncias de interesse em situagoes em que seria altamente complexo o uso da inferéncia classica.

Seja na inferéncia frequentista ou na inferéncia Bayesiana, os métodos de simulagdo de ntiimeros aleatérios
de diferentes modelos probabilisticos assumem grande importancia. Para utilizarmos de uma forma mais
eficiente a estatistica computacional, um conhecimento minimo de simulacdo de realizaces de varidveis
aleatérias é uma necessidade que nao deve ser ignorada. Vamos dar grande énfase a este assunto, sem
descuidar dos demais. Apresentaremos neste material diversos algoritmos desenvolvidos e adaptados para
a linguagem Python.

Simular é a arte de construir modelos segundo Naylor et al. [1971], com o objetivo de imitar o funcionamento
de um sistema real, para averiguarmos o que aconteceria se fossem feitas alteragoes no seu funcionamento
(Dachs [1988]). Este tipo de procedimento pode ter um custo baixo, evitar prejuizos por nao utilizarmos
procedimentos inadequados e otimizar a decisdo e o funcionamento do sistema real.

Precaugdes contra erros devem ser tomadas quando realizamos algum tipo de simulagdo. Podemos
enumerar:

1. escolha inadequada das distribuicoes;
2. simplificacdo inadequada da realidade; e
3. erros de implementagao.

Devemos fazer o sistema simulado operar nas condi¢oes do sistema real e verificar por meio de alguns
testes se os resultados estao de acordo com o que se observa no sistema real. A este processo denominamos
de validacdo. A simulacio é uma técnica que usamos para a solucdo de problemas. Se a solucdo alcangada
for mais rapida, com eficiéncia igual ou superior, de menor custo e de facil interpretacdo em relagao a
outro método qualquer, o uso de simulacéo é justificavel.

1.10 Exercicios

1. Criar no Python os vetores a’ = [4,2,1,5] e b" = [6,3,8,9] e concatené-los formando um tnico
vetor. Obter o vetor ¢ = 2a — b e o vetor d = b'a. Criar uma sequéncia cujo valor inicial ¢ igual
a 2 e o valor final é 30 e cujo passo € igual a 2. Replicar cada valor da sequéncia 4 vezes de duas
formas diferentes (valores replicados ficam agregados e a sequéncia toda se replica sem que os valores
iguais fiquem agregados).

2. Selecionar o subvetor de x" = [4,3,5,7,9,10] cujos elementos sdo menores ou iguais a 7.

3. Criar a matriz

10 1
a2

e determinar os autovalores e a decomposicao espectral de A.

1.10. EXERCICIOS 35

4. Construir uma fungéo para verificar quantos elementos de um vetor de dimenséo n sdo menores
ou iguais a uma constante k, real. Utilize as estruturas de repeticoes for e while para realizar
tal tarefa (cada uma destas estruturas deverd ser implementada em uma diferente fungéo). Existe
algum procedimento mais eficiente para gerarmos tal funcao sem utilizar estruturas de repeticoes?
Se sim, implementé-lo.

5. Implementar uma fungdo Python para realizar o teste ¢ de Student para duas amostras independentes.
Considerar os casos de varidncias heterogéneas e homogéneas. Utilizar uma estrutura condicional
para aplicar o teste apropriado, caso as varidncias sejam heterogéneas ou homogéneas. A decisao
deve ser baseada em um teste de homogeneidade de varidncias. Para realizar tal tarefa implementar
uma funcao especifica assumindo normalidade das amostras aleatérias.

6. Criar uma funcdo para obter a inversa de Moore-Penrose de uma matriz qualquer n x m, baseado
na decomposicdo do valor singular, fun¢do svd do np.linalg.svd. Seja para isso uma matriz A,
cuja decomposicao do valor singular é A = UDV', em que D é a matriz diagonal dos valores
singulares e U e V sdo os vetores singulares correspondentes. A inversa de Moore-Penrose de A é
definida por AT = VD~1UT.

36

CHAPTER 1. INTRODUCAO AO PYTHON

Chapter 2

Variaveis Aleatorias Uniformes

Neste capitulo vamos considerar a geracao de ntimeros aleatérios para o modelo probabilistico uniforme.
A partir do modelo uniforme podemos gerar realizacdes de varidveis aleatérias de qualquer outro modelo
probabilistico. A geragdo de realizacoes de uma distribui¢ao uniforme nao pode ser realizado por méquinas.
Qualquer sequéncia produzida por uma maquina é uma sequéncia previsivel de nimeros pseudo-aleatérios.

Dois geradores de ntimeros aleatérios devem produzir os mesmos resultados nas suas aplicagoes. Se isso
nao ocorrer, um deles ndo pode ser considerado um bom gerador de nimeros aleatérios [Press et al., 1992].

Os conceitos de niimeros uniformes e niimeros aleatdrios sio muitas vezes confundidos. Ntumeros uniformes
sao aqueles que variam aleatoriamente em um intervalo real de valores com probabilidade constante. No
entanto, devemos diferenciar nimeros aleatérios uniformes de outros tipos de nimeros aleatérios, como,
por exemplo, nimeros aleatérios normais ou gaussianos. Estes outros tipos sdo geralmente provenientes
de transformacoes realizadas nos ntimeros aleatérios uniformes. Entdo, uma fonte confidvel para gerar
numeros aleatérios uniformes determina o sucesso de métodos estocasticos de inferéncia e de processos de
simulagdo Monte Carlo.

2.1 Numeros Aleatorios Uniformes

Numeros uniformes aleatérios sdo aqueles que, a principio, se situam dentro de um intervalo real, geralmente,
entre 0 e 1, para os quais ndo podemos produzir uma sequéncia previsivel de valores e cuja fun¢ao densidade
é constante. Em vérios programas de computadores estes ntimeros sdo gerados utilizando o comando
random ou comandos similares. Em Pascal, por exemplo, se este comando for utilizado com o argumento
n, random(n), niimeros aleatérios inteiros U do intervalo 0 < U < n — 1 sdo gerados e se o argumento n
ndo for usado, os nimeros gerados sdo valores aleatérios reais do intervalo [0, 1).

Em geral, os programas utilizam o método congruencial. Vamos considerar os niimeros uniformes inteiros
Uy,Us,Us, ... entre 0 e m — 1, em que m representa um grande nimero inteiro. Podemos gerar estes
numeros utilizando o método congruencial por meio da relagdo recursiva:

Uiy1 = (aU; +¢) modm (2.1)

em que m é chamado de moédulo, a e ¢ sao inteiros positivos denominados de multiplicador e incremento,
respectivamente. O operador mod retorna o resto da divisdo do argumento (aU; + ¢) por m. A sequéncia
recorrente (Equation 2.1) se repete em um perfodo que nio é maior que m, por razdes Gbvias. Se a, ¢ e m
sdo adequadamente escolhidos, a sequéncia tem tamanho méaximo igual a m. A escolha do valor inicial

37

38 CHAPTER 2. VARIAVEIS ALEATORIAS UNIFORMES

Uy determina a sequéncia. O valor do niimero uniforme correspondente no intervalo de 0 a 1 é dado por
Uit1/m, que é sempre menor que 1, mas podendo ser igual a zero.

Vamos apresentar um exemplo didatico para ilustrar um gerador de ntimeros aleatérios. Sejam Uy = a =
c=17em =10, logo,

Up=(Tx7+4+7) mod10=56 mod 10 =26
Uy=(7Tx6+4+7) mod10=49 mod 10=9

e assim sucessivamente. Obtemos a sequéncia de ntimeros aleatorios:
{77679703776797037a6797'"}

e verificamos que o perfodo é igual a 4, {7,6,9,0,---}, que é menor do que m = 10.

Este método tem a desvantagem de ser correlacionado serialmente. Se m, a ou ¢ nao forem cuidadosamente
escolhidos a correlagdo pode comprometer a sequéncia gerada. Por outro lado, o método tem a vantagem
de ser muito rapido. Podemos perceber que a cada chamada do método, somente alguns poucos calculos
sao executados. Escolhemos, em geral, o valor de m pelo maior inteiro que pode ser representado pela
méquina de 32 bits, qual seja, 232. Um exemplo que foi utilizado por muitos anos nos computadores IBM
mainframe, que representam uma péssima escolha é a = 65.539 e m = 231,

A correlagdo serial ndo é o tinico problema desse método. Os bits de maior ordem sdo mais aleatérios
do que os bits de menor ordem (mais significantes). Devemos gerar inteiros entre 1 e 20 por j =
1+ int(20 x random(semente)), ao invés de usar o método menos acurado 7 = 1+ mod (int(1000000 x
random(semente)),20), que usa bits de menor ordem. Existem fortes evidéncias, empiricas e tedricas,
que o método congruencial

Ui+1 = G,Ui mod m (22)

é tdo bom quanto o método congruencial com ¢ # 0, se 0 médulo m e o multiplicador a forem escolhidos
com cuidado [Press et al., 1992]. Park and Miller [1988] propuseram um gerador “padrdo” minimo baseado
nas escolhas:

a=T7"=16.807 m =23 —1=2.147.483.647 (2.3)

Este gerador de ntimeros aleatérios nao é perfeito, mas passou por todos os testes a qual foi submetido
e tem sido usado como padrao para comparar e julgar outros geradores. Um problema que surge e que
devemos contornar é que nao é possivel implementarmos diretamente em uma linguagem de alto-nivel a
equagio (Equation 2.2) com as constantes de (Equation 2.3), pois o produto de a e U; excede, em geral, o
limite méximo de 32 bits para inteiros. Podemos usar um truque, devido a Schrage [1979], para multiplicar
inteiros de 32 bits e aplicar o operador de médulo, garantindo portabilidade para implementagao em
praticamente todas as linguagens e todas as maquinas. O algoritmo de Schrage baseia-se na fatoracdo de
m dada por:

m=aq-+r; ie., g=|m/al; r=m moda

em que |z| denota a parte inteira do nimero z utilizado como argumento. Para um nimero U; entre 1 e
m — 1 e para r pequeno, especificamente para r < ¢, Schrage [1979] mostrou que ambos a(U; mod q) e
r|U;/q| pertencem ao intervalo 0---m — 1 e que

a(U; mod q) —r|U;/q] se maior que 0

a(U; mod q) —r|U;/q] +m caso contrario. (2:4)

aU; mod m = {

2.1. NUMEROS ALEATORIOS UNIFORMES 39

Computacionalmente observamos que a relagdo:
a(U; mod q) = a(U; — q|Ui/q])

se verifica. No Python pode-se optar por usar o operador % (mod), que retorna o resto da operagao entre
dois inteiros e o operador // (div), que retorna o resultado do dividendo para operacdes com inteiros.
A quantidade U; mod ¢ =U; — (U; div ¢) x g pode ser obtida em Python simplesmente por U;%gq.
Atribuimos o resultado a uma variavel qualquer definida como inteiro. Para aplicarmos o algoritmo de
Schrage as constantes de (Equation 2.3) devemos usar os seguintes valores: ¢ = 127.773 e r = 2.836.

A seguir apresentamos o algoritmo do gerador padrao minimo de ntimeros aleatérios:

gerador padrdo minimo de nuimeros aleatdérios adaptado de Park and

Miller. Retorna desvios aleatérios uniformes entre O e 1. Fazer

"sem" igual a qualquer valor inteiro para iniciar a sequéncia;

"sem" n8o pode ser alterado entre sucessivas chamadas da sequéncia

se "sem" for zero ou negativo, um valor dependente do valor do reldgio
do sistema no momento da chamada é usado como semente. Constantes

usadas a = 7°5 = 16.807; m = 2731 - 1 = 2.147.483.647

#ec=0

def gnup(sem, q, a, r, m):

k = sem // q # divis8o por inteiros
sem = a * (sem % q) - r * k

if sem < O:

sem = sem + m

u= sem / m

res = {'sem': sem,
return res

'u': ut

from datetime import datetime # obter o data/hordrio do sistema

def gnap(n, sem = 0):
a = 16807; m = 2147483647
q = 127773; r = 2836
if sem <= O:
t = datetime.now()
sem = t.second+t.minute*60+t.hour*3600+t.day*86400
u=[]
for i in range(n):
x = gnup(sem, q, a, r, m)
u.append(x['u'l)
sem = x['sem']

return u
Exemplos de uso
n=>5
x = gnap(n,0)
Formatando a saida para 5 casas decimais

print (["%0.5f" % v for v in x])

especificando a semente

y = gnap(n, 1001)

Formatando a saida para 5 casas decimais
print (["%0.5f" % v for v in y])

tempo de execugdo para cada nimero aleatdrio

40 CHAPTER 2. VARIAVEIS ALEATORIAS UNIFORMES

n = 100000

tl = datetime.now()

x = gnap(n)

t2 = datetime.now()

t = t2-t1

print ('tempo médio (micros): ',t.microseconds / n)
print('tempo total (micros): ',t.microseconds)

['0.18463', '0.04137', '0.36165', '0.32518', '0.31658']
['0.00783', '0.66933', '0.36093', '0.10878', '0.30000']
tempo médio (micros): 0.29485

tempo total (micros): 29485

Foi computado o tempo médio e o tempo total para rodar 100000 niimeros aleatorios uniformes. Para
capturar o tempo, foi usado o pacote datetime e também para obter a diferenca de tempo entre o inicio e
o fim do processamento de nossa funcao. O bloco para fazer isso deve ser executado de uma sé vez, ou
seja, marcando o bloco e teclando enter no Positron.

Algumas consideragoes a respeito desse algoritmo: a) a fungao gnap (gerador de niimeros aleatérios minima)
retorna um numero real entre 0 e 1. Este tipo de especificacdo determina que as varidveis possuam
precisdo dupla. A precisdo dupla (double-precision float) possui nimeros na faixa de £2,225 x 107308
a +1,798 x 103%®, ocupa 24 bytes de memoéria e possui 15 — 17 digitos significantes; b) o valor da semente é
definido pelo usuario e é passado como pardmetro para a funcao. Isso significa que a varidvel do programa
que chama a funcio e que é passada como semente deve ser atualizada com o novo valor modificado em
gnup. Se o seu valor inicial for zero ou negativo, a fungdo atribui um inteiro dependente da hora do
sistema no momento da chamada; ¢) a fungdo tem dependéncia do pacote datetime, que foi usado para
capturar a hora e dia do sistema.

A rotina é iniciada com os valores de n e da semente fornecidos pelo usudrio. Se a semente for nula ou
negativa, atribuimos um novo valor dependente do relégio do sistema no momento da chamada. A partir
deste ponto o programa deve chamar reiteradas vezes a fungdo gnap, que retorna o valor do niimero
aleatdrio entre 0 e 1 utilizando o algoritmo descrito anteriormente, até que a sequéncia requerida pelo
usudrio seja completada. Nas sucessivas chamadas desta fungdo, o valor da semente é sempre igual ao
valor do 1ltimo passo.

O periodo de gnap é da ordem de 23! ~ 2,15 x 10%, ou seja, a sequéncia completa é um pouco superior a
2 bilhoes de nimeros aleatorios. Assim, podemos utilizar gnap para alguns poucos propdsitos praticos.
Como ja salientamos o gerador padrao minimo de nimeros aleatorios possui duas limitagoes bésicas,
quais sejam, sequéncia curta e correlacio serial. Assim, como existem métodos para eliminar a correlacio
serial e que aumentam o periodo da sequéncia, recomendamos que sejam adotados. Claro que a funcdo
apresentada teve por objetivo ilustrar como podemos programar nossas préoprias fungdes para gerarmos
numeros aleatérios uniformes. O Python, no entanto, possui seu proprio gerador de niimeros uniformes,
que veremos na sequéncia. Um dos melhores e mais interessantes geradores de ntimeros aleatorios é o
Mersenne Twister (MT). Mersenne Twister é um gerador de nimeros pseudo-aleatérios desenvolvido por
Makoto Matsumoto e Takuji Nishimura nos anos de 1996 e 1997 [Matsumoto and Nishimura, 1998]. O
MT possui os seguintes méritos segundo seus desenvolvedores:

o foi desenvolvido para eliminar as falhas dos diferentes geradores existentes;

e possui a vantagem de apresentar o maior periodo e maior ordem de equidistribui¢do do que de qualquer
outro método implementado. Ele fornece um periodo que é da ordem de 219937 —1 a 4,3154 x 106001
e uma equidistribui¢do 623-dimensional;

e é um dos mais rapido geradores existentes, embora complexo;

o faz uso de forma muito eficiente da memoéria.

2.2. NUMEROS ALEATORIOS UNIFORMES NO PYTHON 41

Existem muitas versoes implementadas deste algoritmo, inclusive em Fortran e C e que estdo disponiveis
na internet. Felizmente, o Python ja possui este algoritmo implementado. Por se tratar de um topico
mais avangado, que vai além do que pretendemos apresentar nestas notas de aulas, nao descreveremos
este tipo de procedimento para incorporagoes de fungoes escritas em outras linguagens.

2.2 Numeros Aleatérios Uniformes no Python

No Python podemos gerar niimeros aleatérios uniformes continuos utilizando uma funcao pré-programada.
Os ntmeros aleatérios uniformes sdo gerados pelo comando random.uniform(low=0.0, high=1.0,
size=None) da biblioteca numpy, em que None é para gerar apenas um valor, podendo ser substituido por
n, entre low e high (excluido), que sdo argumentos que delimitam o valor minimo e méximo da sequéncia
a ser gerada. O controle da semente para se gerar uma sequéncia reproduzivel de niimeros uniformes é
dada pelo comando random.seed(seed=None) do numpy, em que o argumento seed deve ser um nimero
inteiro. O Python automaticamente determina a cada chamada uma nova semente. Conseguimos gerar
diferentes sequéncias em cada chamada do comando gerador, sem nos preocuparmos com a semente
aleatoria. O gerador de ntimeros aleatérios uniformes usa o algoritmo Mersenne-Twister por padrao.

No programa apresentado a seguir ilustramos como podemos gerar n nimeros aleatérios uniformes entre 0
e 1 de forma compacta, simples e eficiente:

import numpy as np

n=>5
x = np.random.uniform(low=0.0, high=1.0, size=n)
print (x)

Fixando a semente

np.random.seed (seed=1000)

np.random.uniform(low=0.0, high=1.0, size=n)

np.random.seed(seed=1000)

np.random.uniform(low=0.0, high=1.0, size=n) # igual a anterior (mesma semente)

[0.44924387 0.19552483 0.69580229 0.670942 0.46820941]
array([0.65358959, 0.11500694, 0.95028286, 0.4821914 , 0.87247454])
array([0.65358959, 0.11500694, 0.95028286, 0.4821914 , 0.87247454])

Fizemos um programa para comparar o tempo de execugdo das fungdes gnap e random.uniform() e
retornamos o tempo médio para cada realizagdo da varidvel aleatéoria. Desta forma verificamos que o
algoritmo random.uniform é mais rapido de todos, conforme valores relativos apresentados a seguir.
Obviamente temos que considerar que o algoritmo do numpy é uma func¢ao compilada. O algoritmo gnap
por sua vez foram implementados em Python, que usa uma linguagem interpretada. As comparagoes de
tempo podem ser vistas no programa a seguir. O programa utilizado foi:

tempo de execugdo para cada nimero aleatdrio
comparativo entre nosso gerador e o do np

n = 100000

tl = datetime.now()

x = gnap(n)

t2 = datetime.now()

tgp = t2-t1

print ('tempo médio gnap: ',tgp.microseconds / n)

t1 = datetime.now()

x = np.random.uniform(low=0.0, high=1.0, size=n)
t2 = datetime.now()

tnp = t2-t1

492 CHAPTER 2. VARIAVEIS ALEATORIAS UNIFORMES

print ('tempo médio numpy: ',tnp.microseconds / n)
tempo relativo
tgp / tnp

tempo médio gnap: 0.31908
tempo médio numpy: 0.02231

14.302106678619452

Podemos fazer um histograma usando o programa a seguir. Para isso usamos a biblioteca matplotlib e o
resultado foi:

import matplotlib.pyplot as plt

n = 100000

x = np.random.uniform(low=0.0, high=1.0, size=n) # gnap(n) troque para testar
graf = plt.hist(x, bins='auto', color='#14e8f3',rwidth=0.95,alpha=0.7)

2000 -

1500 A

1000 A

500 ~

0.0 0.2 0.4 0.6 0.8 1.0

2.3 Exercicios

1. Utilizar o gerador gnap para gerar n realizacdes de uma distribuicio exponencial f(z) = Ae™**.

Sabemos do teorema da transformagcéo de probabilidades, que se U tem distribui¢do uniforme, X =
-1 C el o~ s . _ . _rz

F~(U) tem distribuicdo de probabilidade com densidade f(z) = F'(x); em que F(x) = [~ f(t)dt

é a funcio de distribuicio de X e F~1(y) ¢é a sua funcio inversa para o valor y. Para a exponencial

a funcao de distribuicdo de probabilidade é: F(z) = fox Ae Mdt = 1—e~**. Para obtermos a funcio

Az

inversa temos que igualar u a F'(z) e resolver para x. Assim, u = 1 —e~** e resolvendo para x temos:

x = —In(1 —u)/A. Devido & simetria da distribui¢do uniforme 1 — u pode ser trocado por u. O
resultado final é: x = —In (u)/A. Para gerar ntimeros da exponencial basta gerar nimeros uniformes
e aplicar a relagdo x = —1In (u)/A\. Fazer isso para construir uma func¢io que gera n realizacoes

exponenciais. Aplicar a fun¢io para obter amostras aleatérias da exponencial de tamanho n = 100 e
obter o histograma da amostra simulada. Calcule a média e a variancia e confronte com os valores
tedricos da distribuicdo exponencial.

2. Para gerar nimeros de uma distribuicdo normal, cuja densidade é dada por f(x) =

2.3. EXERCICIOS 43

1/(V2m02)exp{—(x — p)?/(20?)}, qual seria a dificuldade para podermos utilizar o teorema
anunciado no exercicio proposto anterior?

3. Como poderiamos adaptar o algoritmo apresentados nesse capitulo para gerar nimeros aleatérios
uniformes utilizando os valores propostos por Park e Miller, ou seja, a = 48.271 e m = 23! — 17
Implementar o algoritmo, tomando cuidado em relagdo aos novos multiplicador g e resto r da
fatoracao de m?

4. Como vocé poderia propor um teste estatistico simples para avaliar a aleatoriedade da sequéncia de
numeros uniformes gerados por esses algoritmos apresentados no capitulo? Implementar sua ideia.

44

CHAPTER 2. VARIAVEIS ALEATORIAS UNIFORMES

Chapter 3

Variaveis Aleatorias Nao-Uniformes

Neste capitulo vamos apresentar alguns métodos gerais para gerarmos realizagoes de variaveis aleatdrias
de outras distribui¢oes de probabilidade, como, por exemplo, dos modelos exponencial, normal e binomial.
Implementaremos algumas fun¢des em Python e finalizaremos com a apresentacao das rotinas otimizadas
e ja implementadas.

3.1 Introducgao

Vamos estudar a partir deste instante um dos principais métodos, determinado pela lei fundamental
de transformacao de probabilidades, para gerarmos dados de distribui¢des de probabilidades continuas
ou discretas. Para alguns casos especificos, vamos ilustrar com procedimentos alternativos, que sejam
eficientes e computacionalmente mais simples. Esta transformacao tem como modelo fundamental a
distribui¢do uniforme (0, 1). Por essa razéo a geragdo de nimeros uniformes continuos é tdo importante.

Veremos posteriormente nestas notas de aulas algoritmos para obtermos numericamente a funcao de
distribuigio F(z) e a sua fungdo inversa x = F~1(p), em que p pertence ao intervalo que vai de 0 a 1.
Este conhecimento é fundamental para a utilizagdo deste principal método.

Neste capitulo limitaremos a apresentar a teoria para alguns poucos modelos probabilisticos, para os quais
podemos facilmente obter a func¢ao de distribuicao de probabilidade e a sua inversa analiticamente. Para
os modelos mais complexos, embora o método determinado pela lei fundamental de transformacao de
probabilidades seja adequado, apresentaremos apenas métodos alternativos, uma vez que, em geral, ele é
pouco eficiente em relacao ao tempo gasto para gerarmos cada realizacdo da variavel aleatéria. Isso se deve
ao fato de termos que obter a funcdo inversa numericamente da fungao de distribuicao de probabilidade
dos modelos probabilisticos mais complexos.

3.2 Meétodos Gerais para Gerar Realizacoes de Variaveis
Aleatoérias

Podemos obter realizacoes de varidveis aleatérias de qualquer distribuicao de probabilidade a partir de
numeros aleatérios uniformes. Para isso um importante teorema pode ser utilizado: o teorema fundamental
da transformacao de probabilidades.

Theorem 3.1 (Teorema fundamental da Transformagdo de Probabilidades). Sejam U uma varidvel
uniforme U(0,1) e X wuma varidvel aleatdria com densidade f e fungdo de distribuicio F continua e
invertivel, entio X = F~Y(U) possui densidade f. Sendo F~! a func¢io inversa da fungdo de distribuicdo
F.

45

46 CHAPTER 3. VARIAVEIS ALEATORIAS NAO-UNIFORMES

Demonstragio: Seja X uma varidvel aleatéria com fungdo de distribuicdo F' e fungdo densidade f. Se
u = F(z), entdo o jacobiano da transformacio é du/dx = F'(z) = f(z), em que U é uma varidvel aleatéria
uniforme U(0,1), com fung¢do densidade g(u) = 1, para 0 < u < 1 e g(u) = 0 para outros valores de u.
Assim, a varidvel aleatéria X = F~1(U) tem densidade f dada por:

du

fx(@) = g(u) || = g (Fx(2)) f(2) = f(2).

Em outras palavras a varidvel aleatéria X = F~1(U) possui funcio densidade fx (), estabelecendo o
resultado almejado e assim, a prova fica completa. |

Para variaveis aleatérias discretas, devemos modificar o teorema para podermos contemplar funcoes de
distribuicbes F' em escada, como sao as fungoes de distribuicdo de probabilidades associadas a essas
varidveis aleatérias.

Na Figura Figure 3.1 representamos como gerar uma realizagdo de uma variavel aleatéria X com densidade
f e funcéo de distribuicdo F. Assim, basta gerarmos um nimero uniforme ug e invertermos a funcéo de
distribui¢do F' neste ponto. Computacionalmente a dificuldade é obtermos analiticamente uma expressao
para a funcdo F'~! para muitos modelos probabilisticos. Em geral, essas expressoes ndo existem e métodos
numéricos sdo requeridos para inverter a funcao de distribuicdo. Neste capitulo vamos apresentar este
método para a distribui¢do exponencial.

0.6 4

0.4 4

0.2 4

Figure 3.1: Ilustracdo do teorema fundamental da transformacao de probabilidades para gerar uma variavel
aleatéria X com densidade f(x) = F'(z). A partir de um nimero aleatério uniforme ugp a funcio de
distribuicao é invertida neste ponto para se obter xp, com densidade f(z).

Outro método bastante geral que utilizaremos é denominado de método da amostragem por rejeicao. Esse
método tem um forte apelo geométrico. Procuraremos, a principio, descrever esse método de uma forma
bastante geral. Posteriormente, aplicaremos este método para gerarmos varidveis aleatérias de alguns
modelos probabilistico. A grande vantagem deste método contempla o fato de ndo precisarmos obter a
funcao de distribuicdo de probabilidade e nem a sua inversa. Estas estratégias s6 podem ser aplicadas
em muitos dos modelos probabilisticos existentes, se utilizarmos métodos numéricos iterativos. Seja f(x)
a funcdo densidade de probabilidade para a qual queremos gerar uma amostra aleatéria. A drea sob a
curva para um intervalo qualquer de = corresponde a probabilidade de gerar um valor = nesse intervalo.

3.2. METODOS GERAIS PARA GERAR REALIZACOES DE VARIAVEIS ALEATORIAS 47

Se pudéssemos gerar um ponto em duas dimensoes, digamos (X,Y’), com distribuigdo uniforme sob a 4rea,
entdao a coordenada X teria a distribuicao desejada.

Para realizarmos de uma forma eficiente a geracao de realizagbes varidveis aleatérias com densidade f(z),
evitando as complicagdes numéricas mencionadas anteriormente, poderiamos definir uma fungdo qualquer
g(z). Essa fungao tem que ter algumas propriedades especiais para sua especificagdo. Deve possuir drea
finita e ter para todos os valores x densidade g(x) superior a f(x). Essa func¢io é denominada de fungao
de comparagdo. Outra caracteristica importante que g(x) deve ter é possuir fungao de distribuigdo G(x)
analiticamente computavel e invertivel, ou seja, * = G~ (u). Como a func¢io g(x) ndo é necessariamente
uma densidade, vamos denominar a drea sob essa curva no intervalo para z de interesse por A = | fooo g(x)dx.
Como G~ é conhecida, podemos gerar pontos uniformes (z,y) que pertencem a area sob a curva g(z)
facilmente. Para isso basta gerarmos um valor de uma varidvel aleatoria uniforme u; entre 0 e A e
aplicarmos o teorema (Theorem 3.1). Assim, obtemos o primeiro valor do ponto (zg,yo) por xo = G~ *(uy).
Para gerarmos a segunda coordenada do ponto ndo podemos gerar um valor de uma variavel aleatéria
uniforme no intervalo de 0 a A, sob pena de gerarmos um ponto que nio estd sob a curva g(z). Assim,
calculamos o valor de g no ponto zg por g(zg). Geramos yo = ugz, sendo us o valor de uma varidvel
aleatdria uniforme entre 0 e g(zg). Assim, obtemos um ponto (zg,yo) uniforme sob a curva g(x). A
dificuldade deste método é justamente estabelecer essa fungdo g(x) com as propriedades exigidas.

Vamos agora tracar as curvas correspondentes a g(x) e f(x) no mesmo grafico. Se o ponto uniforme (xg,yo)
estd na drea sob a curva f(z), ou seja se yg < f(xo), entdo aceitamos xy como um valor valido de f(z); se por
outro lado o ponto estiver na regido entre as densidades f(z) e g(z), ou seja se f(xg) < yo < g(xo), entdo
rejeitamos zg. Uma forma alternativa de apresentarmos esse critério é tomarmos yo de uma distribuicao
U(0,1) e aceitarmos ou rejeitarmos xg se yo < f(x0)/g(xo) ou se yo > f(x0)/g(x0), respectivamente.
Tlustramos esse método na Figura Figure 3.2, sendo que a A representa a drea total sob a curva g(x).

+ &ix,)

I,l2

x0

Figure 3.2: Método da rejeigdo para gerar um valor g da varidvel aleatéria X com funcdo densidade f(x)
que é menor do que g(x) para todo x. Nessa ilustragdo, o deve ser aceito.

Vamos ilustrar o primeiro método e salientar que o segundo método é o que ocorre na maioria dos casos

48 CHAPTER 3. VARIAVEIS ALEATORIAS NAO-UNIFORMES

de geracao de varidveis aleatdrias. A exponencial é uma distribuicdo de probabilidade em que facilmente
podemos aplicar o teorema Theorem 3.1 para gerarmos amostras aleatérias. Assim, optamos por iniciar o
processo de geragdo de niimeros aleatérios nesta distribuigdo, uma vez que facilmente podemos obter a
funcao de distribuigdo e a sua inversa. Seja X uma variavel aleatéria cuja densidade apresentamos por:

f(x) = Ae™® (3.1)

em que A > 0 é o pardmetro da distribui¢do exponencial e x > 0.

A funcao de distribuicdo exponencial é dada por:

F(x) z/ e Mt
0

F(z)=1—e7. (3.2)
A funcdo de distribuicdo inversa z = F~!(u) é dada por:

—In(1 —w)

r=F1(u)= 3

(3.3)

em que u é um nimero uniforme (0, 1).

Devido & distribui¢do uniforme ser simétrica, podemos substituir 1 — u na equagdo (Equation 3.3) por w.
Assim, para gerarmos uma realizagdo de uma variavel exponencial X, a partir de uma varidvel aleatoéria
uniforme, utilizamos o teorema Theorem 3.1 por intermédio da equacéo:

- ln(u).

N (3.4)

xTr =

O algoritmo Python para gerarmos realizagoes de variaveis aleatérias exponenciais é dado por:

programa demonstrando a geracdo de n realizagdes de varidveis
aleatdérias exponenciais com pardmetro lamb, utilizamos
a func3o np.random.uniform() para
gerarmos nimeros aleatérios uniformes
import numpy as np
def rexpon(n, lamb = 1.0):
u = np.random.uniform(0.0, 1.0, n) # gera vetor u (U(0,1))
x = -np.log(u) / lamb # gera vetor x com distrib. exp.
return x # retorna o vetor x

exemplo
rexpon(5, 0.1)

array([5.68759477, 1.05310872, 0.98271196, 7.5075487 , 16.84574452])

Podemos utilizar a fungéo pré-existente do Python (np.random.exponential (scale=1.0, size=None))
para realizarmos a mesma tarefa. Simplesmente digitamos np.random.exponential (scale=10, size=5)
e teremos uma amostra aleatéria de tamanho n de uma exponencial com pardmetro A = 1/scale. O
Python faz com que a estatistica computacional seja ainda menos penosa e portanto acessivel para a
maioria dos pesquisadores.

3.3. VARIAVEIS ALEATORIAS DE ALGUMAS DISTRIBUICOES IMPORTANTES 49

3.3 Variaveis Aleatérias de Algumas Distribui¢coes Importantes

Vamos descrever nesta secao alguns métodos especificos para gerarmos algumas realizagoes de varidveis
aleatérias. Vamos enfatizar a distribuicdo normal. Apesar de o mesmo método apresentado na se¢ao
Section 3.2 poder ser usado para a distribuicdo normal, daremos énfase a outros processos. Para utilizarmos
o mesmo método anterior terfamos que implementar uma fungdo parecida com rexpon, digamos rnormal.
No lugar do comando x = -log(u)/lamb deverfamos escrever z = invnorm(u) X o + u, sendo que
invnorm(u) é a fungdo de distribui¢do normal padréo inversa. A distribui¢do normal padrdo dentro da
familia normal, definida pelos seus parametros p e o2, é aquela com média nula e varidncia unitéria.
Esta densidade serd referenciada por N(0,1). Essa deve ser uma funcgao externa escrita pelo usudrio. Os
argumentos u e o da funcdo sdo a média e o desvio padrao da distribui¢cdo normal que pretendemos gerar.
A funcgao densidade da normal é:

1 _ew?
f) = e (3.5)

Nenhuma outra fungao utilizando o teorema Theorem 3.1 serd novamente apresentada, uma vez que
podemos facilmente adaptar as fungoes rexpon se tivermos um eficiente algoritmo de inversao da fungao
de distribui¢do do modelo probabilistico alvo. A dificuldade deste método é a necessidade de uma enorme
quantidade de cédlculo para a maioria das densidades. Isso pode tornar ineficiente o algoritmo, pois o
tempo de processamento é elevado.

Podemos ainda aproveitar a relacdo entre algumas funcoes de distribui¢des para gerarmos realizagoes de
varidveis aleatérias de outras distribui¢bes. Por exemplo, se X é normal com densidade (Equation 3.5),
N(u,0?), podemos gerar realizagoes de Y = eX. Sabemos que fazendo tal transformacio Y terd distribuigio
log-normal, cuja densidade com parametros de locacdo o (i) e escala § (o) é:

1 7%[10(1/)*(1]2
e] ,
yBV2m

Um importante método usado para gerar dados da distribuicdo normal é o de Box-Miiller, que é baseado na
generalizacdo do método da transformagao de varidveis para mais de uma dimensdo. Para apresentarmos

fly) = y > 0. (3.6)

esse método, vamos considerar p varidveis aleatérias Xi, Xo,..., X, com funcdo densidade conjunta
f(z1,22,...,2p) e p varidveis Y1, Y, ..., Y, funcdes de todos os X’s, entdo a funcdo densidade conjunta
dos Y'’s é:
oz, oxq
Oy1 7T Oyp
f(ylaayp):f(mh’xp)abs (37)
Oz, oz,
dy1 T Oyp

em que J = [9()/9()| é o Jacobiano da transformacao dos X’s em relagdo aos Y’s.

Vamos considerar a transformacao (Equation 3.7) para gerar dados normais com densidade dadas por
(Equation 3.5). Para aplicarmos a transformacao de Box-Miiller, vamos considerar duas varidveis aleatérias
uniformes entre 0 e 1, representados por X; e X5 e duas fungdes delas, representadas por Y; e Ys e dadas
por:

y1 = +v/—2Inz cos (2mxs)
Y2 = +v—2Inx;sin (2mzs)

(3.8)

Ao explicitarmos X; e X5 em (Equation 3.8) obtemos alternativamente:

50 CHAPTER 3. VARIAVEIS ALEATORIAS NAO-UNIFORMES

2 = o3 (vi+u3)
(3.9)

- 1 Y2
Ty = 5-arctan (yl)

Sabendo que a seguinte derivada dk arctan(g)/dz é dada por k(dg/dx)/(1 + g?), em que g é uma funcio
de X, entao o Jacobiano da transformacao é:

2 2 2 2
1 1 _y16_0a5(y1+y2) _y2e—075(y1+y2) 1))
15} J y 1 — —0,5(y1 +y
b1y Ot - s p =3¢ (wi+32) (3.10)
dy1 Oys 2wy%(1+;%) 2wy1(1+;%) &
1 1

Assim, a fun¢do densidade conjunta de Y; e Y3 é dada por f(z1,22)|J|, sendo

M=o

fyry2) = {\/%e‘yl] [\/12?6_2%} . (3.11)

Desde que a densidade conjunta de Y7 e Y5 é o produto de duas normais independentes, podemos afirmar
que as duas varidveis geradas sdo normais padrao independentes, como pode ser visto em Johnson and
Wichern [1998] e Ferreira [2018].

Assim, podemos usar esse resultado para gerarmos variaveis aleatérias normais. A dificuldade, no entanto,
é apenas computacional. A utilizacdo de fungoes trigonométricas como seno e cosseno pode limitar a
performance do algoritmo gerado tornando-o lento. Um truque apresentado em Press et al. [1992] é
bastante interessante para evitarmos diretamente o uso de fungoes trigonométricas. Esse truque representa
uma melhoria do algoritmo de Box-Miiller e é devido a Marsaglia and Bray [1964].

Ao invés de considerarmos os valores das varidveis aleatérias uniformes z1 e zo de um quadrado de lado
igual a 1 (quadrado unitério), tomarmos u; e us como coordenadas de um ponto aleatério em um circulo
unitério (de raio igual a 1). A soma de seus quadrados R? = U + U3 é uma varidvel aleatéria uniforme
que pode ser usada como X;. J4 o angulo que o ponto (uj,us2) determina em relagdo ao eixo 1 pode
ser usado como um angulo aleatorio dado por ® = 27 X5. Podemos apontar que a vantagem da nao
utilizagdo direta da expressdo (Equation 3.8) refere-se ao fato do cosseno e do seno poderem ser obtidos
alternativamente por: cos (2rx2) = u1/V7r2 e sin (2722) = up/Vr2. Evitamos assim as chamadas de
funcgoes trigonométricas. Na Figura Figure 3.3 ilustramos os conceitos apresentados e denominamos o
angulo que o ponto (u1,us) determina em relagao ao eixo u; por 6.

Agora podemos apresentar o funcdo boxmuller para gerar dados de uma normal utilizando o algoritmo de
Box-Miiller. Essa funcdo utiliza a fun¢do polar para gerar dois valores aleatdrios, de variaveis aleatérias
independentes normais padréo Y; e Y5. A fungdo boxmuller é:

Funcdo boxmuller retorna uma amostra de tamanho n de
uma distribuigdo normal com média mu e varidncia sigma”2
utilizando o método Polar Box-Miller

import matplotlib.pyplot as plt
def polar(Q):
r2 = -1
while r2 <= 0 or r2 >= 1:
u = np.random.uniform(-1.0,1.0,2)
r2 = ul[0]**2+u[1] **2
y = (-2 % np.log(r2) / r2)*x0.5 * u
return y

3.3. VARIAVEIS ALEATORIAS DE ALGUMAS DISTRIBUICOES IMPORTANTES

Figure 3.3: Circulo unitario mostrando um ponto aleatério (ui, ug) com r

R*=U}+ U} = X,

9 = Z'H'Xg
: o Uy
sin(0©) = sin(27X2) = \{jﬁ
1

cos(0) = cos(21X,) =

,/Rz
y1 = v/ —21In(zy) cos (2mxs)

Yo = v/ —2In(zy) sin (27x,)

—21n(r?

h = %’-‘h
—21n(r?

Y2 = 7?"2()’Uuz

2

51

— 42 2
= uj + uj representando x; e

6 o dngulo que o ponto (u1, us) determina em relacdo ao eixo 1. No exemplo, o ponto estd situado no

circulo unitario, conforme é exigido.

52 CHAPTER 3. VARIAVEIS ALEATORIAS NAO-UNIFORMES

def boxmuller(n, mu = 0, sigma = 1):
if n% 2 ==0: # n é par
k=n//2
for i in range(k):
if 1 ==
x = polar()
else:
X = np.append(x,polar())
else: # n é impar
k=n//2
if k ==
x = polar() [0]
else:
for i in range(k):
if i ==
x = polar()
else:
X = np.append(x,polar())
x = np.append(x,polar() [0])
X = X * sigma + mu
return x

n = 30000

x = boxmuller(n, 10, 2)

graf = plt.hist(x, bins=20, color='#14e8f3',rwidth=0.95,alpha=0.7)
plt.show()

4000 A

3000 A

2000 -

1000 ~

O T T T T T T T T T
2 4 6 8 10 12 14 16 18

Algumas aproximagoes sdo apresentadas em Atkinson and Pearce [1976] e serdo apenas descritas na
sequéncia. Uma das aproximacoes faz uso da densidade Tukey-lambda e aproxima a normal igualando os
quatro primeiros momentos. Esse algoritmo, além de ser uma aproximagao, tem a desvantagem de utilizar
a exponenciagdo que é uma operacao lenta. Utilizando essa aproximacdo podemos obter uma variavel

3.3. VARIAVEIS ALEATORIAS DE ALGUMAS DISTRIBUICOES IMPORTANTES 53

normal X a partir de uma varidvel uniforme U ~ U(0,1) por:

X = [U%135 — (1 —1U)"'3%]/0,1975.

Outro método é baseado na soma de 12 ou mais variaveis uniformes (U; ~ U(0,1)) independentes. Assim,
a variavel X = 2112 U; — 6 tem distribuicdo aproximadamente normal com média 0 e varidncia 1. Isso
ocorre em decorréncia do teorema do limite central e em razao de cada uma das 12 varidveis uniformes
possuirem média 1/2 e varidncia 1/12.

Estas duas aproximacdes tem valor apenas didatico e ndao devem ser recomendadas como uma forma de
gerar variaveis normais. Muitas vezes esse fato é ignorado em problemas que requerem elevada precisao e
confiabilidade dos resultados obtidos. Quando isso acontece conclusoes incorretas ou no minimo imprecisas
podem ser obtidas.

De uma forma geral temos
k

k

X = ~ N(0,1),

k

12

pois E(U;) = (b—a)/2 e V(U;) = (b—a)?/12, em que k é o nimero de uniformes que devem ser somadas
para cada realizacao da varidvel normal. A seguir, implementamos essas duas aproximagoes para fins de
treinamento em criagdo de fungdes com o Python.

A primeira é a Tukey-Lambda:

Aproximacdo baseada na Tukey-Lambda
def tukeylambda(n, mu = O, sigma = 1):
x = np.random.uniform(0.0,1.0,n)
x = (x*%0.135 -(1-x)**0.135) / 0.1975
X = X * sigma + mu
return x

n = 1000000

x = tukeylambda(n, 10,10)
np.mean(x)

np.std(x)

np.float64(9.991828169781451)

np.float64(10.005908735163825)

A segunda é a aproximacao da soma de k uniformes, usando o teorema do limite central:
Aproximacdo baseada na soma de k

uniformes

def soma_un(u, k):

if k == 12:
rn = np.sum(u) - 6
else:

rn = (op.sum(u) - k / 2) / (k / 12)**x0.5
return rn

def norm_tlc(n, mu = O, sigma = 1, k = 12):
x =[]

for i in range(n):

54 CHAPTER 3. VARIAVEIS ALEATORIAS NAO-UNIFORMES

u = np.random.uniform(0.0,1.0,k)
x. append(soma_un(u, k))
X = np.asarray(x) * sigma + mu
return x
n = 100000
k=12
x = norm_tlc(n, 10, 10, k)

np.mean(x)
np.std(x)

np.float64(10.016603390067642)
np.float64(10.005439687766788)

3.4 Distribuicao Binomial

Vamos ilustrar a partir da binomial a geragdo de realizagoes de varidveis aleatorias discretas. A distribuigdo
binomial é surpreendentemente importante nas aplicacoes da estatistica. Esta distribuicao aparece nas
mais variadas situagoes reais e teéricas. Por exemplo, o teste ndo-paramétrico do sinal utiliza a distribuicao
binomial, a ocorréncia de animais doentes em uma amostra de tamanho n pode ser muitas vezes modelada
pela distribui¢gdo binomial. Intimeros outros exemplos poderiam ser citados. A distribui¢do binomial é a
primeira distribuicdo discreta de probabilidade, entre as distribuicoes ja estudadas. A varidvel aleatoria
X com distribuicdo de probabilidade binomial tem a seguinte funcéo de probabilidade:

P(X :.’E) - <n>px(]- _p)nfz’ 1':0,1,"' ,moe nz>]-7 (312)

em que os parametros n e p referem-se, respectivamente, ao tamanho da amostra e a probabilidade de
sucesso de se obter um evento favoravel em uma amostragem de 1 tnico elemento ao acaso da populacao.
O termo (Z) é o coeficiente binomial definido por:

()=

A probabilidade de sucesso p, em amostras de tamanho n da populagio, ou seja, em n ensaios de Bernoulli,
deve permanecer constante e os sucessivos ensaios devem ser independentes. O pardmetro n em geral é
determinado pelo pesquisador e deve ser um inteiro maior ou igual a 1. Se n = 1, entdo a distribuicao
binomial se especializa na distribuicdo Bernoulli. Assim, a distribuigdo binomial é a repeticdo de n
ensaios Bernoulli independentes e com probabilidade de sucesso constante. Os seguintes teoremas e lemas
sdo importantes, para a definicdo de alguns métodos que apareceram na sequéncia. Estes lemas serdo
apresentados sem as provas.

Theorem 3.2 (Génese). Seja X o nimero de sucessos em uma sequéncia de n ensaios Bernoulli com

probabilidade de sucesso p, ou seja,
n

XZZI(Ui <p)

i=1
em que Uy, Us, - -, Uy sdo varidveis uniformes (0,1) .i.d. e I(e) é uma fungio indicadora. Entdio, X tem
distribui¢ao binomial (n,p).

Lemma 3.1 (Soma de binomiais). Se Xy, Xo, -+, Xi sdao varidveis aleatdrias binomiais independentes

com (n1,p), -+, (ng,p), entdo Zle X, tem distribuicio binomial, com parametros (Zle N, D).

3.4. DISTRIBUICAO BINOMIAL 95

Lemma 3.2 (Tempo de Espera - Propriedade 1). Sejam G1, Ga, --- varidveis aleatérias geométricas
independentes e, X, o menor inteiro tal que

Z G; > n.
i=1

Assim, X tem distribuicio binomial (n,p).

As varidveis geométricas citadas no lema Lemma 3.2 sdo definidas a seguir. Se G tem distribuicdo
geométrica com probabilidade de sucesso constante p € (0,1), entdo, a funcdo de probabilidade é:

P(G=g)=p(l-p)' " g=12-- (3.13)

A geométrica é a distribui¢do do tempo de espera até a ocorréncia do primeiro sucesso no g-ésimo evento,
numa sequéncia de ensaios Bernoulli independentes. Assim, supOe-se que venham a ocorrer g — 1 fracassos,
cada um com probabilidade de ocorréncia constante 1 — p, antes da ocorréncia de um sucesso no g-ésimo
ensaio, com probabilidade p. Finalmente, o segundo lema do tempo de espera pode ser anunciado por:

Lemma 3.3 (Tempo de Espera - Propriedade 2). Sejam E;, Es, --- varidveis aleatérias exponenciais
i.i.d., e X o menor inteiro tal que

X+1

Logo, X tem distribui¢io binomial (n,p).

As propriedades especiais da distribuicdo binomial, descritas no teorema e nos lemas, formam a base para
dois algoritmos binomiais. Estes dois algoritmos sao baseados na propriedade de que uma variavel aleatéria
binomial é & soma de n varidveis Bernoulli obtidas em ensaios independentes e com probabilidade de
sucesso constante p. O algoritmo binomial mais basico baseia-se na geracdo de n varidveis independentes
U(0,1) e no computo do total das que sdo menores ou iguais a p. Este algoritmo denominado por
Kachitvichyanukul and Schmeiser [1988] de BU é dado por:

1. Fagax=0e k= 0;

2. Gere u de uma U(0,1) e faca k =k + 1;
3. Se u < p, entado faca x =z + 1;

4. Se k < n va para o passo 2;

5. Retorne = de uma binomial (n,p).

O algoritmo BU tem velocidade proporcional a n e depende da velocidade do gerador de niimeros aleatorios,
mas possui a vantagem de ndo necessitar de variaveis de setup. O segundo algoritmo atribuido a Devroy
1980 [Devroy, 1980] é denominado de BG e é baseado no lema Lemma 3.2. O algoritmo BG pode ser
descrito por:

1. Fagay =0,z =0e c=In(1 — p);

Se ¢ = 0, v para o passo 6;

Gere u de uma U(0,1);

y=y+ |In(u)/c|] + 1, em que |®] denotam a parte inteira do argumento e;
Se y <n, faca r =x + 1 e vd para o passo 3;

Retorne x de uma binomial (n,p).

A e

O algoritmo utilizado no passo 4 do algoritmo BG é baseado em truncar uma varidavel exponencial
G = [In(U)/c] + 1 ~ G(p) para gerar uma varidvel geométrica, conforme descri¢ao feita por Devroy
[1986]. O tempo de execugdo desse algoritmo é proporcional a np, o que representa uma considerdvel
melhoria da performance. Assim, p > 0,5, pode-se melhorar o tempo de execucao de BG explorando a
propriedade de que se X é binomial com paradmetro n e p, entdo n — X é binomial com parametros n e 1 —p.

56 CHAPTER 3. VARIAVEIS ALEATORIAS NAO-UNIFORMES

Especificamente o que devemos fazer é substituir p pelo min(p,1 — p) e retornar x se p < % ou retornar
n — x, caso contrario. A velocidade, entdo, é proporcional a n vezes o valor min(p,1 — p). A desvantagem
desse procedimento é que sao necessarias varias chamadas do gerador de realizagoes de variaveis aleatorias
uniformes, até que um sucesso seja obtido e o valor x seja retornado. Uma alternativa a esse problema

pode ser conseguida se utilizarmos um gerador baseado na inversdo da fungao de distribuicdo binomial.

Como ja haviamos comentado em outras oportunidades o método da inversido é o método béasico para
convertermos uma variavel uniforme U em uma varidvel aleatéria X, invertendo a fun¢do de distribuicao.
Para uma varidvel aleatéria continua, temos o seguinte procedimento:

¢ Gerar um nimero uniforme
o Retornar z = F~!(u)

O procedimento andlogo para o caso discreto requer a busca do valor z, tal que:

Flz—1)=Y P(X=i)<u<) P(X=i)=F().

i<x i<z

A maneira mais simples de obtermos uma solugdo no caso discreto é realizarmos uma busca sequencial
a partir da origem. Para o caso binomial, este algoritmo da inversdo, denominado de BINV, pode ser
implementado se utilizarmos a férmula recursiva:

P(X=0) =(1-p)
(3.14)
— — _ n—z+1
PX=2) =PX=xa-— 1)7"'ﬁ
para x = 1,2,--- ,n da seguinte forma:
1. Faca pp = min(p,1 —p), gq¢ =1 —pp, r =pp/qq, g=r(n+1) e f =qq";
Gere v de uma U(0,1) e faca z =0e F = f;
Se F' >= u, entdao va para o passo 5;

Fagax:x—i—l,fzf(g—r>,F=F+fevéparaopasso3;
x

or o N

Se p < %, entdo retorne x de uma binomial (n, p), sendo retorne n — x de uma binomial (n,p).

A velocidade deste algoritmo é proporcional a n vezes o valor min(p,1 — p). A vantagem desse algoritmo
é que apenas uma varidvel aleatéria uniforme é gerada para cada varidavel binomial requerida. Um ponto
importante é o tempo consumido para gerar gq" é substancial e dois problemas potenciais podem ser
destacados. O primeiro é a possibilidade de underflow no célculo de f = qq™, quando n é muito grande e,
o segundo, é a possibilidade do cédlculo recursivo de f ser uma fonte de erros de arredondamento, que se
acumulam e que se tornam sérios na medida que n aumenta [Kachitvichyanukul and Schmeiser, 1988].
Devroy [1986] menciona que o algoritmo do tempo de espera BG baseado no lema Lemma 3.2 deve ser
usado no lugar de BINV para evitarmos esses fatos. Por outro lado, Kachitvichyanukul and Schmeiser
[1988] mencionam que basta implementar o algoritmo em precisdo dupla que esses problemas sdo evitados.

Exemplificag8o de algoritmos para gerar realizagbes de
varidveis aleatérias binomiais binom(n, p).

Os algoritmos BU, BG e BINV foram implementados

Exemplificagdo de algoritmos para gerar realizagbes de
variaveis aleatdérias binomiais binom(n, p).

Os algoritmos BU, BG e BINV foram implementados

import numpy as np

def bu(n, p):
x =0
k=0

while k < n:

3.4. DISTRIBUICAO BINOMIAL

u = np.random.uniform(0.0,1.0,1)
k=k+1
if u <= p:
x += 1
return(x)

def bg(n, p):
if p > 0.5:
pp=1-p

e
o)
I

P

"
Il
o

c = np.log(l - pp)
if ¢ < O:
while y <= n:
u = np.random.uniform(0.0,1.0,1)
y += np.trunc(ap.log(u) /c) + 1
if y <= n:
x += 1
if p > 0.5:
X =1n- X
return x

def binv(n, p):
if p > 0.5:
pp=1-p

el
el
I

p
=1-pp
q**n
PP / q
r*x (n+ 1)
np.random.uniform(0.0,1.0,1)
0
Fx = f
while Fx < u:
x += 1
f*=(g/ x-1)
Fx += f
if p > 0.5:
X=n-Xx
return x

W £ 0 K HQ

gerador de uma amostra binomial n, p
recebe uma das trés fungdes implementas
como argumento, size e prob

sdo os parémetros da binomial e n é o
tamanho da amostra ser gerada

recebe bg por default

def rbinom(n, size, prob, func = bg):

H H H H H H

57

58 CHAPTER 3. VARIAVEIS ALEATORIAS NAO-UNIFORMES

x = []
for i in range(n):

x.append (func(size, prob))
return x

Exemplo

prob = 0.5

size = 3

bu(size, prob)

bg(size, prob)

binv(size, prob)

n = 10000 # sample size

x = rbinom(n, size, prob, bg) # pode trocar bg por binv ou bu

graf = plt.hist(x,bins=size+l,color="'#14e8f3"',rwidth=0.95,alpha=0.7)

2

0

4000

3500 A

3000 -

2500 A

2000 -

1500 ~

1000 ~

500 A

o T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Procedimentos de geracao de niimeros aleatdrios poderiam ser apresentados para muitas outras distribuigoes
de probabilidades. Felizmente no python nao temos este tipo de preocupagao, pois estas rotinas ja existem
e estdo implementadas em linguagem nao interpretada. Inclusive para os modelos considerados temos
rotinas prontas. Veremos uma boa parte delas na préxima secao.

3.5 Rotinas Python para Geracao de Realizagoes de Variaveis
Aleatorias
Nesta sec¢ao, veremos alguns dos principais comandos Python para acessarmos os processos de geragao

de realizagoes de varidveis aleatérias de diferentes modelos probabilisticos. Os modelos probabilisticos
contemplados pelo R estdao apresentados na Tabela Table 3.1.

3.5. ROTINAS PYTHON PARA GERACAO DE REALIZACOES DE VARIAVEIS ALEATORIAS 59

Table 3.1: Distribui¢oes de probabilidades, nome Python (np.random. col2nome) e pardmetros (argumentos
da funcao) dos principais modelos probabilistico, sendo size o tamanho da amostra.

Distribuigao Nome numpy Parametros

beta beta(a, b, size=None) a, b, size

binomial binomial(n, p, size=None) n, p,size

Cauchy Padrao standard__cauchy(size=None) size

qui-quadrado chisquare(df, size=None) df, size

exponencial exponential(scale=1.0, scale (1/lambda), size
size=None)

F f(dfnum, dfden, size=None) dfnum, dfden, size

gama gamma(shape, scale=1.0, shape, scale (1/beta), size
size=None)

geométrica geometric(p, size=None) p, size

hipergeométrica hypergeometric(ngood, nbad, ngood, nbad, nsample, size
nsample, size=None)

log-normal lognormal(mean=0.0, sigma=1.0, mean, sigma, size
size=None)

logistica logistic(loc=0.0, scale=1.0, loc, scale, size
size=None)

binomial negativa negative_binomial(n, p, n, p, size
size=None)

normal normal(loc=0.0, scale=1.0, loc, scale, size
size=None)

Poisson poisson(lam=1.0, size=None) lam, size

t de Student standard__t(df, size=None) df, size

uniform uniform(low=0.0, high=1.0, low, high, size
size=None)

Weibull weibull(a, size=None) a, size

No Python, a biblioteca scipy.stats nos permite realizarmos os calculos da fun¢do de probabilidade
(caso discreto) com o comando, por exemplo, para a binomial, de sp.stats.binom.pmf (x, n,p). Neste
caso, o scipy foi importado com sp e pmf é acrénimo de probability mass function, do inglés. Para o
caso continuo, usamos pdf. Para a funcdo de distribui¢do, usamos cdf, sejam as varidveis continuas
ou discretas. Para a inversa da funcao de distribuicao, usamos ppf, percent point function. Neste caso
o primeiro argumento é o valor da probabilidade acumulada. No caso particular deste capitulo temos
interesse na geragdo de realizacdes de variaveis aleatérias. Existem ainda modelos probabilisticos nao
centrais, para os quais devemos utilizar o pardmetro de ndo-centralidade (ncp). Para mais detalhes, visite
a pagina do scipy.stats clicando aqui.

O uso destas fungbes para gerarmos nimeros aleatorios é bastante simples. Se, por exemplo, quisermos
gerar dados de uma distribuicdo beta com pardmetros o = 1 e § = 2, podemos utilizar o programa
ilustrativo apresentado na sequéncia. Podemos utilizar fun¢des semelhantes a funcao beta, de acordo
com a descricao feita na Tabela Table 3.1, para gerarmos n dados de qualquer outra funcao densidade ou
funcao de probabilidade. Este procedimento é mais eficiente do que utilizarmos nossas préprias fungoes,
pois estas funcoes foram implementadas em geral em C. Se para algum modelo particular desejarmos
utilizar nossas préprias fungoes e se iremos chamaé-las milhares ou milhoes de vezes é conveniente que
implementemos em C e as associemos ao Python. A forma de associarmos as rotinas escritas em C ao
Python foge do escopo deste material e por isso nao explicaremos como fazé-lo.

n = 50000
alpha = 1.0

https://docs.scipy.org/doc/scipy/reference/stats.html

60

beta

graf
np.m

CHAPTER 3. VARIAVEIS ALEATORIAS NAO-UNIFORMES

= 2.0

np.random.beta(alpha, beta, n)

= plt.hist(x, bins='auto', color='#14e8f3',rwidth=0.95,alpha=0.7)
ean (x)

alpha/(alphatbeta) # verdadeira
np.var(x)
alpha*beta/((alpha+beta)**2* (alpha+beta+l)) # verdadeira
np.float64(0.3330860156881842)
0.3333333333333333
np.float64(0.05555526120029795)
0.05555555555555555
2000 -
1750 A
1500 A
1250 A
1000 A
750 A
500 A
250 A
O T I T T T T
0.0 0.2 0.4 0.6 0.8 1.0
3.6 Exercicios
1. Seja f(x) = 322 uma funcdo densidade de uma varidvel aleatéria continua X com dominio definido

no intervalo [0;1]. Aplicar o método da inversdo e descrever um algoritmo para gerar realizagoes de
varidveis aleatorias dessa densidade. Implementar em R e gerar uma amostra de tamanho n = 1.000.
Estimar os quantis 1%, 5%, 10%, 50%, 90%, 95% e 99%. Confrontar com os quantis teéricos.

Os dados a seguir referem-se ao tempo de vida, em dias, de n = 40 insetos. Considerando que a
distribui¢ao do tempo de vida ¢ a exponencial e que o parametro A pode ser estimado pelo estimador
de méxima verossimilhanca A = 1 /X, em que X = >, X;/n, obter o intervalo de 95% de confianca
utilizando o seguinte procedimento: i) gerar uma amostra da exponencial de tamanho n = 40,
utilizando o algoritmo rexpon, considerando o pardmetro igual a estimativa obtida; ii) determinar
a estimativa da média g = 1/X por X nesta amostra simulada de tamanho n = 40; iii) repetir
1.000 vezes os passos (i) e (ii) e armazenar os valores obtidos; iv) ordenar as estimativas e tomar os
quantis 2,5% e 97,5%. Os valores obtidos sdo o intervalo de confianga almejado, considerando como
verdadeira a densidade exponencial para modelar o tempo de vida dos insetos. Este procedimento é
denominado de bootstrap paramétrico. Os dados em dias do tempo de vida dos insetos sao:

3.6. EXERCICIOS 61

8,521 4,187 2,516 1,913 8780 5912 0,761 12,037
2,604 1,680 5626 6,361 5,068 3,031 1,128 1,385
12,578 2,029 0,595 0,445 3,601 7,829 1,383 1,934
0,864 8514 4977 0,576 1,503 0475 1,041 0,301
1,781 2564 5,359 2,307 1,530 8,105 3,151 8,628

Repetir esse processo, gerando 100.000 amostras de tamanho n = 40. Compare os resultados e
verifique se o custo adicional de ter aumentado o nimero de simulagdes compensou a possivel maior
precisdo obtida.

3. Gerar uma amostra de n = 5.000 realizac¢oes de varidveis normais padrao utilizando as aproximagoes:
X = [U%35 —(1 — U)*135]/ 0,1975 e da soma de 12 ou mais varidveis uniformes (U; ~ U(0,1))
independentes, dada por X = 232 U; — 6. Confrontar os quantis 1%, 5%, 10%, 50%, 90%, 95% e
99% esperados da distribuicdo normal com os estimados dessa distribuicio. Gerar também uma
amostra de mesmo tamanho utilizando o algoritmo Polar-Box-Miiller. Estimar os mesmos quantis
anteriores nesta amostra e comparar com os resultados anteriores.

4. Se os dados do exercicio 2 pudessem ser atribuidos a uma amostra aleatéria da distribuicao log-
normal, entao estimar os pardmetros da log-normal e utilizar o mesmo procedimento descrito naquele
exercicio, substituindo apenas a distribuicao exponencial pela log-normal para estimar por intervalo
a média populacional. Para estimar os pardmetros da log-normal utilizar o seguinte procedimento:
a) transformar os dados originais, utilizando X = In(X;); b) determinar a média e o desvio padrao
amostral dos dados transformados - estas estimativas sdo as estimativas de p e . Utilizar estas
estimativas para gerar amostras log-lognormais. Realizar os mesmos procedimentos descritos para
exponencial, confrontar os resultados e discutir a respeito da dificuldade de se tomar uma decisao
da escolha da distribuicdo populacional no processo de inferéncia. Como em situagoes reais nunca se
sabe de qual distribuicdo os dados sdo provenientes com precisdo, entao vocé teria alguma ideia de
como fazer para determinar qual a distribuicdo que melhor modela os dados do tempo de vida dos
insetos? Justificar sua resposta adequadamente com os procedimentos numéricos escolhidos.

5. Fazer reamostragens com reposi¢ao a partir da amostra do exercicio 2 e estimar o intervalo de 95%
para a média populacional, seguindo os passos descritos a seguir e utilizar um gerador de niimeros
uniformes para determinar quais elementos amostrais devem ser selecionados: i) reamostrar com
reposicdo os n = 40 elementos da amostra original e compor uma nova amostra por: X; ii) calcular
a média desta nova amostra por X* = >""" | X/ /n; iii) armazenar este valor e repetir os passos (i)
e (i) B — 1 vezes; iv) agrupar os valores com o valor da amostra original; e v) ordenar os valores
obtidos e determinar os quantis 2,5% e 97,5% desse conjunto de B valores. Escolher B = 1.000
e B =100.000 e confrontar os resultados obtidos com os obtidos nos exercicios anteriores para a
distribui¢do exponencial e log-normal. Os resultados que estiverem mais préximos deste resultado
devem fornecer um indicativo da escolha da distribui¢do mais apropriada para modelar o tempo de
vida de insetos. Este procedimento sugerido neste exercicio é o bootstrap nao-paramétrico. A sua
grande vantagem ¢ nao precisar fazer suposicao a respeito da distribuicdo dos dados amostrais.

6. Uma importante relacdo para obtermos intervalos de confianca para a média de uma distribuicao
exponencial, f(z) = Ae™?, refere-se ao fato de que a soma de n varidveis exponenciais com pardmetro
A é igual a uma gama f(y) = ﬁ(a) (y/ﬁ)o‘*1 e % com pardmetros « =n e § = 1/A. Assim, assumir
que os dados do exercicio 2 tém distribuicdo exponencial com pardametro A estimado pelo reciproco
da média amostral, ou seja, =1 /X. Considerando que a varidvel X tem distribuicio gama padrio
com parametro a = n, entao obtenha Y = BX =X/ \. Neste caso Y| B tem distribuicdo da soma
de n variaveis exponenciais, ou seja, distribuicdo gama com pardmetros « = n e g = B Como
queremos a distribuicio da média, devemos obter a transformacio Y = Y/n. Gerar amostras de
tamanho n = 1.000 e n = 100.000 e estimar os quantis 2,5% e 97,5% da distribuicdo de Y, em cada

62

CHAPTER 3. VARIAVEIS ALEATORIAS NAO-UNIFORMES

uma delas. Confrontar os intervalos de confianga, dessa forma obtidos, com os do exercicio 2. Quais
sdo as suas conclusoes? Qual é a vantagem de utilizar a distribui¢do gama?

. Duas amostras binomiais foram realizadas em duas (1 e 2) diferentes populagdes. Os resultados

do ntmero de sucesso foram y; = 2 e y» = 3 em amostras de tamanho n; = 12 e ny = 14,
respectivamente, de ambas as populagdes. Estimar os parametros p; e po das duas populagoes por:
P1 = y1/n1 e Pa = ya/no. Para testarmos a hipdtese Hy : p1 = pa ou Hy : p1 — po = 0, podemos
utilizar o seguinte algoritmo bootstrap paramétrico: a) utilizar p; e po para gerarmos amostras
de tamanho n; e ny de ambas as populagoes; b) estimar P = ylj/nl e paj = ygj/ng na j-ésima
repetigéo desse processo; ¢) calcular d; = pi; — p3;; d) repetir os passos de (a) a (¢) B — 1 vezes;
e) unir com o valor da amostra original; f) ordenar os valores e obter os quantis 2,5% e 97,5% da
distribuigdo bootstrap de d;; e g) se o valor hipotético 0 estiver contido nesse intervalo, ndo rejeitar
Hy, caso contrario, rejeitar a hipdtese de igualdade das proporg¢oes binomiais das duas populagoes.

Chapter 4

Geracao de Amostras Aleatoérias de
Variaveis Multidimensionais

Os modelos multivariados ganharam grande aceitacdo no meio cientifico em funcao das facilidades
computacionais e do desenvolvimento de programas especializados nesta area. Os fené6menos naturais
sdo em geral multivariados. Um tratamento aplicado em um ser, a um solo ou a um sistema nao afeta
isoladamente apenas uma varidvel, e sim todas as varidveis. Ademais, as varidveis possuem relagoes entre si
e qualquer mudanca em uma ou algumas delas, afeta as outras. Assim, a geracao de realizagdes de vetores
ou matrizes aleatorias é um assunto que nao pode ser ignorado. Vamos neste capitulo disponibilizar ao
leitor mecanismos para gerar realizagoes de varidveis aleatérias multidimensionais.

4.1 Introducao

Os processos para gerarmos variaveis aleatorias multidimensionais sdo muitas vezes considerados dificeis
pela maioria dos pesquisadores. Uma boa parte deles, no entanto, pode ser realizada no Python com
apenas uma linha de comando. Embora tenhamos estas facilidades, nestas notas vamos apresentar detalhes
de alguns processos para gerarmos dados dos principais modelos probabilisticos multivariados como, por
exemplo, a normal multivariada, a Wishart e a Wishart invertida, a ¢ de Student multivariada e algumas
outras distribuigoes.

Uma das principais caracteristicas das varidveis multidimensionais é a correlagdo entre seus componentes.
A importéncia destes modelos é praticamente indescritivel, mas podemos destacar a inferéncia paramétrica,
a inferéncia bayesiana, a estimacao de regides de confianga, entre outras. Vamos abordar nas préximos
secOes formas de gerarmos realizagbes de varidveis aleatérias multidimensionais para determinados modelos
utilizando o Python para implementarmos as rotinas ou para utilizarmos as rotinas pré-existentes. Nossa
aparente perda de tempo, descrevendo funcgoes menos eficientes do que as pré-existentes no Python,
tem como razao fundamental permitir ao leitor ir além de simplesmente utilizar rotinas previamente
programadas por terceiros. Se o leitor ganhar, ao final da leitura deste material, a capacidade de produzir
suas préprias rotinas e entender como as rotinas pré-existentes funcionam, nosso objetivo tera sido
alcancado.

4.2 Distribuicao Normal Multivariada

A funcao densidade de probabilidade normal multivariada de um vetor aleatério X é dada por:

63

64CHAPTER 4. GERACAO DE AMOSTRAS ALEATORIAS DE VARIAVEIS MULTIDIMENSIONAIS

) = (2m)H 2 e { - S 0TE g0 (41)

em que p e X sdo, respectivamente, o vetor de média e a matriz de covaridncias, simétrica e positiva
definida, e p é a dimensao do vetor aleatério X.

Um importante resultado diz respeito a combinacoes lineares de varidveis normais multivariadas e sera
apresentado no seguinte teorema.

Theorem 4.1 (Combinagoes Lineares). Considere o vetor aleatdrio mormal multivariado X =
(X1, X2, -+, X,]T com média ju e covaridncia X e considere C uma matriz (p x p) de posto p, entio
a combinagio linear Y = CX (p x 1) tem distribuicio normal multivariada com média py = Cp e
covaridéncia v = CXCT.

Proof. Se C possui posto p, entdo existe C~! e, portanto,

X =Cly.

O Jacobiano da transformagao é J = |C|~! e a distribui¢io de Y é dada por fy(y) = fx(x)|J]. Se X
tem distribui¢do normal multivariada, entao

Fely) =2 e {4y - = Oy - f o

—(2m) P22 |37 F o2

xem{;b'CMW(CT)12“31@'Cm}

1

:@m—wqcchrzwp{—;y—cuf(cch‘Wy—cm}

que é a densidade normal multivariada do vetor aleatério Y com média uy = Cu e covaridncia Xy =
CXC'. Portanto combinacoes lineares de varidveis normais multivariadas sdo normais multivariadas. [

O teorema Theorem 4.1 nos fornece o principal resultado para gerarmos dados de uma normal multivariada.
Assim, como nosso objetivo é gerar dados de uma amostra normal multivariada com vetor de médias p
e matriz de covaridncias 3 pré-estabelecidos, devemos seguir os seguintes procedimentos. Inicialmente
devemos obter a matriz raiz quadrada de X, representada por X'/2. Para isso, vamos considerar a
decomposicao espectral da matriz de covariancias dada por ¥ = PAPT. Logo, podemos definir a matriz
raiz quadrada de ¥ por /2 = PAY2PT | em que A é a matriz diagonal dos autovalores, A'/2 é a matriz
diagonal contendo a raiz quadrada destes elementos e P é a matriz de autovetores, cada um destes vetor
disposto em uma de suas colunas. Desta decomposicio facilmente podemos observar que X = X1/23%1/2,

Assim, podemos utilizar o seguinte método para gerarmos uma realizacdo p-variada de uma normal
multivariada. Inicialmente devemos gerar um vetor aleatério Z = [Z;, Zs, - -, Zp]—r de p varidveis normais
padrao independentes utilizando, por exemplo, o algoritmo de Box-Miiller. Isto que dizer que puz =0 e
que Cov(Z) = I. Este vetor deve sofrer a seguinte transformagao linear:

Y =%Y2Z 4 4. (4.2)

4.2. DISTRIBUICAO NORMAL MULTIVARIADA 65

De acordo com o teorema Theorem 4.1, o vetor Y possui distribui¢do normal multivariada com média
py = 22 puz4 1 = p e matriz de covariancias £/2IX%1/2 = . Este serd o método que usaremos para obter
a amostra p-dimensional de tamanho n de uma normal multivariada com média u e covaridncia 3. Para
obtermos a matriz raiz quadrada no Python, podemos utilizar o comando para a obtencao da decomposigéo
espectral np.linalg.svd () ou alternativamente o comando 1inalg.cholesky(a,/,*,upper=False), que
retorna o fator de Cholesky de uma matriz positiva definida, que na verdade é um tipo de raiz quadrada.
A decomposicao do valor singular neste caso se especializa na decomposi¢ao espectral, pois a matriz X
é simétrica. Geraremos um vetor de varidveis aleatérias normal padrao independentes Z utilizando o
comando np.random.normal (). Em seguida a transformacdo Equation 4.2 é realizada.

Vamos ilustrar e apresentar o programa de geracdo de variaveis normais multivariada para um caso
particular bivariado (p = 2) e com vetor de médias p = [10,50] " e matriz de covaridncias dada por:

s-[01]

O programa resultante é dado por:

Fungdo Python para gerar n vetores aleatérios normais
multivariados com vetor de médias mu e covaridncia sigma.
o resultado & uma matriz n x p, sendo p o numero de varidveis
import numpy as np
import matplotlib.pyplot as plt
def rnormmv(n, mu, sigma):
p = sigma.shape[0]
u, d, vt = np.linalg.svd(sigma)
sigmaroot = u @ np.diag(d**0.5) @ vt
for i in range(n):
z = np.random.normal(0,1,p)
if i ==
X = sigmaroot @ z + mu
else:
li = sigmaroot @ z + mu
x = np.vstack((x, 1i))
return x

Exemplo de uso

n = 10000
sigma = np.array([[4,1],[1,1]1])
mu = [10,50]

x = rnormmv(n, mu, sigma)

np.mean(x, axis = 0)

np.cov(x,rowvar = False)

a = x[:,0]

b = x[:,1]

plt.scatter(a, b, s = 3, ¢ = '#070808', alpha = 0.5)
plt.xlabel('x1"')

plt.ylabel('x2"')

plt.show()

array([9.9758766 , 49.98663703])

array([[3.82820664, 0.94211224],
[0.94211224, 0.99422806]11)

66CHAPTER 4. GERACAO DE AMOSTRAS ALEATORIAS DE VARIAVEIS MULTIDIMENSIONAIS

Text (0.5, 0, 'x1')

Text (0, 0.5, 'x2')

54

53 -

52

51 4

50 A

X2

49 A

48 A

47 A

46 I I I I I I I I
4 6 8 10 12 14 16 18

No python temos o gerador do numpy, random.multivariate_normal(mean, cov, size=None,
check_valid='warn', tol=1e-8) para gerarmos dados da distribuicdo normal multivariada. No script
a seguir aplicamos a nossa fun¢do e a do numpy para gerarmos um nimero grande de observagdes e
comparamos o desempenho em termos de tempo de processamento. A fun¢do do numpy protege o processo,
com, por exemplo verificando se a matriz de covaridncias é positiva definida. Em nossa func¢do nao
utilizamos nenhuma protegao, embora seja possivel fazer isso.

Comparativo de desempenho dos dois geradores de

normais multivariadas

from datetime import datetime

n = 60000

sigma = np.array([[4,1],[1,1]1])

mu = [10, 50]

tl = datetime.now()

x = rnormmv(n, mu, sigma)

t2 = datetime.now()

trnm = t2-t1

print ('tempo médio da rnormmv: ',trnm.microseconds / n)
tl = datetime.now()

x = np.random.multivariate_normal (mu, sigma, size=n)
t2 = datetime.now()

tnp = t2-t1

print ('tempo médio da numpy: ',tnp.microseconds / n)
tempo relativo

print ('numpy é mais rapido ',trnm.microseconds / tnp.microseconds ,'

vezes')

tempo médio da rnormmv: 6.167566666666667
tempo médio da numpy: 0.04126666666666667
numpy € mais rapido 149.45638126009692 vezes

4.2. DISTRIBUICAO NORMAL MULTIVARIADA 67

A rotina do numpy foi muitas vezes superior a nossa implementacao. Isso em parte é devido ao fato de
estar compilada e, talvez, também ao possivel método utilizado para obter a matriz raiz quadrada. A
troca da matriz raiz quadrada de svd para Cholesky ou pela decomposicio espectral, poderia ser feita e
o desempenho médio dos procedimentos avaliados, para definirmos a melhor estratégia de implementagao.
Fizemos uma alteragdo na nossa implementagao. Colocamos um argumento com uma das trés opgoes,
para que o usudrio escolha qual método utilizar. A obtenc¢do da raiz quadrada foi implementada em uma
funcédo separada.

Funcdo Python para gerar n vetores aleatérios normais
multivariados com vetor de médias mu e covaridncia sigma.
o resultado & uma matriz n x p, sendo p o numero de variaveis
def sigmaroot(sigma, metodo='chol'):
if metodo == 'svd':
u, d, vt = np.linalg.svd(sigma)
root = u @ np.diag(d**0.5) @ vt
elif metodo == 'eig':
d, u = np.linalg.eig(sigma)

root = u @ np.diag(d**0.5) @ np.transpose(u)
else:
root = np.linalg.cholesky(sigma)

return root

S&8o0 métodos validos: 'chol', 'svd' e 'eig'
def rnormmv_2(n, mu, sigma, meth ='chol'):
p = sigma.shape[0]
sigmar = sigmaroot(sigma, meth)
for i in range(n):
z = np.random.normal(0,1,p)
if i ==
X = sigmar @ z + mu
else:
1i = sigmar @ z + mu
x = np.vstack((x, 1i))
return x

O comparativo entre eles foi apresentado no seguinte script:

Comparativo de desempenho dos dois geradores de
normais multivariadas

n = 60000

sigma = np.array([[4,1],[1,11])
mu = [10,50]

t1 = datetime.now()

x = rnormmv_2(n, mu, sigma,'svd')
t2 = datetime.now()

tsvd = t2-t1

t1 = datetime.now()

x = rnormmv_2(n, mu, sigma,'eig')
t2 = datetime.now()

teig = t2-t1

t1 = datetime.now()

x = rnormmv_2(n, mu, sigma, 'chol')
t2 = datetime.now()

tchol = t2-t1

68CHAPTER 4. GERACAO DE AMOSTRAS ALEATORIAS DE VARIAVEIS MULTIDIMENSIONAIS

t1 = datetime.now()
x = np.random.multivariate_normal (mu, sigma, size=n)
t2 = datetime.now()

tnp = t2-t1

print('tempo médio da svd: ',tsvd.microseconds / n)
print('tempo médio da eig: ',teig.microseconds / n)
print ('tempo médio da chol: ',tchol.microseconds / n)
print ('tempo médio da numpy: ',tnp.microseconds / n)

tempo relativo

print ('numpy é mais rapido ',tsvd/tnp ,' vezes que svd')
print ('numpy é mais rapido ',teig/tnp ,' vezes que eig')

print ('numpy é mais rapido ',tchol/tnp,' vezes que chol')
tempo médio da svd: 5.20085

tempo médio da eig: 5.958333333333333

tempo médio da chol: 5.476483333333333

tempo médio da numpy: 0.042633333333333336

numpy € mais rapido 512.9206411258796 vezes que svd
numpy € mais rapido 530.6880375293198 vezes que eig
numpy € mais rapido 519.3858483189993 vezes que chol

Embora nossa funcao seja relativamente rapida, levando entre 2 e 14 micro segundos para rodar cada
observagao bivariada neste caso, ela ainda foi bem menos eficiente que rotina numpy. A compilagdo é
fundamental em relacdo & interpretacao. E extremamente simples gerarmos dados de normais multivariadas
utilizando a fun¢do numpy, o que nos desobriga de programar os nossos proprios geradores aleatorios.
Reiteramos que fizemos isso, pois queremos que o nosso leitor e nosso estudante consigam desvendar o que
esta por tras de cada método deste e também que consiga desenvolver suas habilidades em programacao,
implementando rotinas sofisticadas como estas.

4.3 Distribuicao Wishart e Wishart Invertida

As distribui¢oes Wishart e Wishart invertida sdo relacionadas as distribui¢oes de matrizes de somas de
quadrados e produtos nao-corrigidas W obtidas de amostras de tamanho n — 1 da distribuigdo normal
multivariada com média 0. Considere X; = [X1, X2, -+, Xp]" 0 j-ésimo vetor (j =1, 2, -+, v) de uma
amostra aleatoria de tamanho v de uma normal com média 0 e covariancia 3, entdo a matriz aleatoria

n—1
W=> XX/
j=1
possui distribuigio Wishart com n — 1 graus de liberdade e pardmetro ¥ (matriz positiva definida).

Da mesma forma, se temos uma amostra aleatéria de tamanho n de uma distribui¢do normal multivariada
com média e covaridncia X, a distribuicdo da matriz aleatoria

W= Zn:(xj -X)(X; -X)"
j=1

é Wishart com v =n — 1 graus de liberdade e pardmetro 3.

A funcdo densidade Wishart de uma matriz aleatéria W de somas de quadrados e produtos e representada
por W, (v,%) é definida por:

4.3. DISTRIBUICAO WISHART E WISHART INVERTIDA 69

» —v/2 (v—p—1)/2 tr (31
(vl) = ———EL exp{—T(Q‘”) (43)
—1+1
ovp/2p(p—1)/4 T L
e e ()

em que I'(z) = fooo t*~le~%dt é funcdo gama.

Assim, para gerarmos variaveis Wishart com pardmetros n — 1 graus liberdade inteiro e matriz ¥ positiva
definida, podemos utilizar um gerador de amostras aleatérias normais multivariadas e obter a matriz de
somas de quadrados e produtos amostrais. Esta matriz serd uma realizagdo de uma varidvel aleatéria
Wishart, que é uma matriz de dimensao p X p. A seguinte fungdo pode ser utilizada para obtermos
realizagoes aleatérias de uma Wishart:

Exemplificagdo para gerarmos matrizes de somas de quadrados e produtos
aleatérias W com distribuigdo Wishart(nu, Sigma), nu = n - 1
utiliza o random.multivariate_normal para gerar normais multivariadas.
def rwishart(nu, sigma):

p = sigma.shape[0]

mu = np.full(p, 0)

x = np.random.multivariate_normal(mu, sigma, size=nu + 1)

w = nu * np.cov(x, rowvar=False)

return w

Exemplo de uso
sigma = np.array([[4, 11, [1, 111)

nu =5
W = rwishart(nu, sigma)
print (w)

[[7.05079726 3.09190124]
[3.09190124 5.36923849]]

Outra distribuicao relacionada que aparece frequentemente na inferéncia multivariada é a Wishart invertida.
Considere W uma matriz aleatéria W, (v, ¥), entdo a distribui¢ao de S = W~ dada pela fungao densidade

—1v/2|q|—(v+p+1)/2 tr(o-1g—1
fs(s|1/,§]): |2 | |SZ|7 exp {_7’(25)} (44)
—i+1
ouvp/24p(p—1)/4 T L
mi]| (=

é a Wishart invertida que vamos representar por VVp_l(u7 3).

Se quisermos gerar uma matriz aleatéria de uma distribuicdo Wishart invertida em vez de uma Wishart
precisamos simplesmente realizar a transformacio S = W~!. Assim, vamos alterar o programa anterior
para gerar simultaneamente realizacoes aleatérias de distribuicio Wishart e Wishart invertida. E
importante salientar que em nossa notacao os parametros da Wishart invertida sao aqueles da Wishart.
Isto é relevante, pois alguns autores apresentam os parametros da Wishart invertida e nao da Wishart e
devemos estar atentos para este fato, sendo geraremos varidveis aleatérias com densidades diferentes.

Exemplificacdo para gerarmos matrizes de somas de quadrados e produtos
aleatdérias W com distribuigdo Wishart(nu, Sigma), nu = n - 1

utiliza o pacote mvtnorm para gerar amostras normais.

Exemplificagdo para gerarmos matrizes de somas de quadrados e produtos
aleatdérias W com distribuig3o Wishart(nu, Sigma), nu = n - 1

#
#
#
#
#
e Wishart invertida

7T0CHAPTER 4. GERACAO DE AMOSTRAS ALEATORIAS DE VARIAVEIS MULTIDIMENSIONAIS

def rw_wi(nu, sigma, wi = True):
p = sigma.shape[0]
mu = np.full(p, 0)
x = np.random.multivariate_normal (mu, sigma, size=nu+1)
w = nu * np.cov(x, rowvar=False)
if wi:
iw = np.linalg.pinv(w)
res = {'W': w, 'WI': iw}
return res
else:
return w

Exemplo de uso
sigma = np.array([[4, 1], [1, 111)

nu =5
wi = True
res = rw_wi(nu, sigma, wi)

print('Ambas, W e WI', res)
wi = False

res = rv_wi(nu, sigma, wi)
print('S6 a Wishart: ', res)

Ambas, W e WI {'W': array([[4.0581762 , 1.31624891],
[1.31624891, 5.33421115]1]1), 'WI': array([[0.26785352, -0.06609448],
[-0.06609448, 0.20377836]11)2}
S6 a Wishart: [[51.35506656 9.39105554]
[9.39105554 5.37679542]]

Um aspecto importante que precisamos mencionar € sobre a necessidade de gerarmos varidveis Wishart ou
Wishart invertida com graus de liberdade reais. Para isso podemos utilizar o algoritmo descrito por Smith
and Hocking [1972]. Considere a decomposi¢do da matriz ¥ dada por X = /2312 que utilizaremos
para realizarmos uma transformacdo na matriz aleatéria gerada, que de acordo com propriedades de
matrizes Wishart, serd Wishart.

Devemos inicialmente construir uma matriz triangular inferior T = [¢;;] (¢,j = 1, 2, ---, p), com
tii ~ N/X12/+1—z' et;; ~N(0,1)sei>jet;; =0sei<j. Nasequéncia devemos obter a matriz I' = TT',

que possui distribuicdo W),(v,I). Desta forma obteremos W = 120312 com a distribuicdo desejada,
ou seja, com distribuicdo W,(r,X). Fica claro que com esse algoritmo podemos gerar varidveis Wishart
com graus de liberdade reais ou inteiros.

Funcédo mais eficiente para gerarmos matrizes de somas de quadrados
e produtos aleatdrias W com distribuigdo Wishart(nu, Sigma) e
Wishart invertida WI(nu, Sigma)
def rwwi_sh(nu, sigma, wi = True):
tip = type(sigma)
if tip is int or tip is float:
p=1
else:
p = sigma.shape[0]
df = np.flip(np.arange(nu - p + 1, nu + 1, 1))
if p > 1:
t = np.diag(np.random.chisquare(df, p)**0.5)
t[np.tril_indices(t.shape[0], -1)]=np.random.normal(0,1,int(p*(p-1)/2))

4.3. DISTRIBUICAO WISHART E WISHART INVERTIDA 71

s = np.linalg.cholesky(sigma)
else:
t = np.random.chisquare(df)**0.5
s = sigma**0.5
if tip is int or tip is float:
W o= skk2 k tHx2
else:
w =s @t @ np.transpose(t) @ np.transpose(s)
if wi:
if tip is int or tip is float:
iv=1/w
else:
iw = np.linalg.pinv(w)
res = {'W': w, 'WI': iw}
return res
else:
return w

Exemplo de uso
sigma = np.array([[4, 11, [1, 111)

nu =5
wi = True
res = rwwi_sh(nu, sigma, wi)

print('Ambas, W e WI', res)

wi = False

res = rywi_sh(nu, sigma, wi)
print('S6 a Wishart: ', res)

Ambas, W e WI {'W': array([[24.32404115, 11.15794726],
[11.15794726, 6.9826559 11), 'WI': array([[0.15398403, -0.24605906],
[-0.24605906, 0.53640249]11)%}

S6 a Wishart: [[27.25907006 3.40843415]

[3.40843415 2.53724148]]

Vamos chamar a atencdo para alguns fatos sobre esta fungdo, pois utilizamos alguns coman-
dos e recursos nao mencionados até o presente momento. Inicialmente utilizamos o comando
np.diag(np.random.chisquare(df, p)**0.5) para preencher a diagonal da matriz T com realizacoes
de varidveis aleatorias qui-quadrado e em seguida do método diag para transformar o vetor em uma
matriz diagonal.

Outro aspecto interessante que merece ser mencionado é o uso do fator de Cholesky no lugar de obter
a matriz raiz quadrada de 3. O fator de Cholesky utiliza a decomposicdo ¥ = SST, em que S é uma
matriz triangular inferior. O Python, por meio da func¢@o np.linalg.cholesky(sigma), retorna a matriz
S. Finalmente, se o nimero de varidveis é igual a 1, a distribuicdo Wishart se especializa na qui-quadrado
e a Wishart invertida na qui-quadrado invertida. Assim, quando p = 1 o algoritmo retornard varidveis
02X e 1/(02X) com distribui¢des proporcionais a distribuicdo qui-quadrado e qui-quadrado invertida,
respectivamente, sendo X uma variavel qui-quadrado com v graus de liberdade.

O processamento para o caso escalar foi controlado com o uso do if, pois operac¢ées matriciais ndo sao
aplicéveis se os argumentos forem escalares inteiros ou float (reais).

72CHAPTER 4. GERACAO DE AMOSTRAS ALEATORIAS DE VARIAVEIS MULTIDIMENSIONAIS

4.4 Distribuicao t de Student Multivariada

A familia de distribuigoes elipticas é muito importante na multivariada e nas aplicacdes Bayesianas. A
distribui¢do ¢ de Student multivariada é um caso particular desta familia. Esta distribui¢do tem particular
interesse nos procedimentos de comparacao multipla dos tratamentos com alguma testemunha avaliada no
experimento. A fungdo densidade do vetor aleatério X = [X7, Xo, - - -, Xp]T € RP com parametros dados
pelo vetor de médias p = [u1, fi2, -+, f1p] T € RP e matriz simétrica e positiva definida ¥ (p x p) é

_9((x—p) "B (x —)
fx(x) = I=|1/2

L (452 1)
:(wy)p/Zr(y/2)|2|1/2 {1+V(X—M)TE 1(x—M)]

em que a fun¢do g é dada por

_vip
) 2

2

9C) = G 2)

I (42) (z)*(VJrP)/Q.

A varidvel aleatéria X tem média p e matriz de covaridncias v /(v — 2) no caso de v > 2.

Se efetuarmos a transformagio Y = X71/2(X — p) obteremos a distribuicio ¢ multivariada esférica
simétrica, cuja densidade é dada por:

e L]
) = o) [1+ oy y] : (4.5)

A varidvel aleatéria Y terd vetor de médias nulo e covaridncias vI/(v — 2) e a densidade terd contornos
esféricos de mesma probabilidade.

Vamos apresentar a forma geral para gerarmos variaveis aleatérias p-dimensionais ¢ multivariada com v
graus de liberdade e pardmetros 11 e X. Seja um vetor aleatério Z com distribui¢do N,(0,I) e a varidvel
aleatéria U com distribui¢do qui-quadrado com v graus de liberdade, entao o vetor aleatério Y, dado pela
transformacao

Y=\r (4.6)

Z
VU’
possui distribuicao ¢ multivariada esférica com v graus de liberdade. O vetor X obtido pela transformagcéao
linear

X = SV2Y 4 p, (4.7)
possui distribuicao ¢ multivariada eliptica com v graus de liberdade e parametros e 3.

Devemos aplicar a transformagio (Equation 4.7) n vezes a n diferentes vetores aleatérios Y e varidveis
U. Ao final deste processo teremos uma amostra de tamanho n da distribuigdo ¢ multivariada almejada
com v graus de liberdade. Assim, para gerarmos dados de uma ¢ multivariada com dimensao p, graus de
liberdade v (ndo necessariamente inteiro), vetor de média p qualquer e matriz positiva definida 3 podemos
utilizar a seguinte fungdo Python, substituindo na expressdo (Equation 4.7) a matriz raiz quadrada pelo
fator de Cholesky F de X:

Funcdo para gerarmos varidveis aleatdrias t
multivariadas (n, mu, Sigma, nu).
def rtmult(n, mu=[0,0,0], sigma=np.identity(3), df = 1):

4.4. DISTRIBUICAO T DE STUDENT MULTIVARIADA

np.linalg.cholesky(sigma)

sigma.shape [0]
np.random.multivariate_normal (np.zeros(p) ,np.identity(p),n)
(np.random.chisquare(df,n) / df)**0.5

x / ql:, np.newaxis] @ np.transpose(f)

+= np.tile(mu, n).reshape(n,p)

return x

H MW Q X'T H
Il

Exemplo de uso

n = 3000
nu = 3
mu = [0,0]

sigma = np.identity(2)

x = rtmult(n, mu, sigma, nu)

fig, (axl, ax2) = plt.subplots(l, 2)
fig.suptitle('Distribuigdes t multivariadas')

axl.scatter(x[:,0], x[:,1], s = 3, ¢ = '#070808', alpha = 0.5)
axl.set_xlabel('x1"')

axl.set_ylabel('x2')

mu = [10, 5]

sigma = np.array([[4, 1.9], [1.9,1]])

x = rtmult(n, mu, sigma, nu)

ax2.scatter(x[:,0], x[:,1], s = 3, ¢ = '#070808', alpha = 0.5)

ax2.set_xlabel('x1")
ax2.set_ylabel('x2')
np.cov(x, rowvar = False)
nu * sigma

Text (0.5, 0.98, 'Distribuigdes t multivariadas')

Text (0.5, 0, 'x1')

Text (0, 0.5, 'x2')

Text (0.5, 0, 'x1')

Text (0, 0.5, 'x2')

array([[11.93907649, 5.58639671],
[5.58639671, 2.91987189]1)

array([[12. , 5.7],
[5.7, 3.1D

7TACHAPTER 4. GERACAO DE AMOSTRAS ALEATORIAS DE VARIAVEIS MULTIDIMENSIONAIS

Distribuicdes t multivariadas

30 A
20 . °
o.:.:.
X 10 4 2,
_1 - ° . °
5 0 T o.
—20 - ¢
—25 - —10 - ..
-10 0 10 0 50
x1 x1

Graus de liberdade reais positivos podem ser utilizados como argumento da fungdo criada. Foram geradas,
no exemplo anterior, duas amostras aleatorias para ilustrar. Foram definidos para os parametros u, 3 e v,
os valores [0,, 0, 0] T, I3 e 3, respectivamente, como default. Podemos também utilizar a implementacio
determinada pela fun¢do multivariate_t.rvs(mu, sigma, df n), da biblioteca scipy, para gerarmos
dados da distribuicao ¢ de Student multivariada.

from scipy.stats import multivariate_t

n=>5

X = multivariate_t.rvs([1.0, -0.5], [[2.1, 0.3], [0.3, 1.5]], df=3, size = n)

print (X)

[[1.83453904 -0.04665643]
[0.61547066 -0.42351571]
[3.53400917 0.11474699]
[2.24031733 -2.3241255]
[1.

8376512 0.84591245]]

4.5 QOutras Distribuicoes Multivariadas

Existem muitas outras distribuicoes multivariadas. Vamos mencionar apenas mais duas delas: a log-normal
e a normal contaminada multivariadas. A geracdo de um vetor aleatério de dimensdo p com distribuicéo
log-normal multivariada é feita tomando-se o seguinte vetor Y = [exp(Z;), exp(Za), - -+, exp(Z,)]", em
que Z ~ Np(p, X).
gerador de realizacdes de variaveis log-normal
multivariada com pardmetros mu e sigma
def rlgnormalmv(n, mu=np.zeros(3), sigma=np.identity(3)):

x = np.exp(np.random.multivariate_normal (mu,sigma,n))

return x

4.5. OUTRAS DISTRIBUICOES MULTIVARIADAS (0]

Exemplo de uso
n==7
print (rlgnormalmv(n)) # lgnormalmv padr&o

[[1.78290124
[0.36201042 4.73290222 1.8653464]
[0.19736769 0.04221863 0.26430841]

1.0333459 1
4 1
0 0
[3.72074082 1.53495832 3.52605987]
4 1
3 0
2 3

.83717252]

[2.43920477 4.59650076 1.20886589]
[2.09388643 3.02869341 0.16943952]
[0.74785201 2.74693018 3.56925337]]

Para gerarmos realizacdes da normal contaminada multivariada consideramos a simulagdo de um vetor
aleatério X cuja densidade de probabilidade é dada por:

(x —p1) 27 (x—) }
2
(x — p2) 25" (x — o) }
2

fx(x) =6(2m)7P/2|2 |72 exp {

(1 - 8)(2m) P S 2 exp {—

em que 3; positiva definida, i =1,2e 0 < § < 1.
gerador de variaveis normal contaminada multivariada
com delta sendo a proporgdo de ndo-contaminantes: (0, 1)
def rncm(n, mul, mu2, sigl, sig2, delta=0.8):
u = np.random.uniform(size=n)
p = sigl.shape[0]
nl = len(ulu <= deltal)
n2 =n - nl
x = np.zeros(n * p).reshape(n, p)
if (n1 > 0):
1i = np.arange(n) [u <= deltal
x[1i,:] = np.random.multivariate_normal(mul, sigl, nl)
if (n2 > 0):
1li = np.arange(n) [u > deltal
x[1i,:] = np.random.multivariate_normal (mu2, sig2, n2)
return x

Exemplo

n = 20000

delta = 0.8

mul = np.zeros(2)

sigl = np.identity(2)

mu2 = [-2, -2]

sig2 = np.array([[2, 1.4], [1.4, 11]1)

x = rncm(n, mul, mu2, sigl, sig2, delta)

plt.scatter(x[:,0], x[:,1], s = 3, c = '#070808', alpha = 0.5)
plt.show()

76CHAPTER 4. GERACAO DE AMOSTRAS ALEATORIAS DE VARIAVEIS MULTIDIMENSIONAIS

4_

4.6 Exercicios

1. Gerar uma amostra de tamanho (n = 10) uma distribui¢do normal trivariada com vetor de médias
p = [5,10,15]" e matriz de covariancias

5 -1 2
Y=| -1 3 -2
2 -2 7

Estimar a média e a covaridncia amostral. Repetir este processo 1.000 vezes e estimar a média das médias
amostrais e a média das matrizes de covaridncias amostrais. Estes valores correspondem exatamente aos
respectivos valores esperados? Se néo, apresentar a(s) principal(is) causa(s).

2. A partir da alteracdo da funcdo rnormmv que realizamos, comparar o tempo de processamento
médio quando for utilizado svd, eig ou cholesky que corresponde a um possivel tipo de matriz
raiz quadrada de 3. Verificar se houve melhoria no desempenho em relagao ao tempo médio de
processamento de cada variavel aleatoria gerada, vetor p-dimensional. Testar isso usando modificando
n e p, pois s6 apresentamos o teste para um tnico valor de p e pequeno, p = 2.

3. Sabemos que varidaveis Wishart possuem média vX. Apresentar um programa para verificar se o
valor esperado, ignorando o erro de Monte Carlo, é alcancado com o uso das fungoes apresentadas
para gerar variaveis Wishart. Utilizar 10.000 repeti¢oes de Monte Carlo. Isso seria uma forma
simples, embora nao conclusiva, de checar se a funcao esta realizando as simulagoes corretamente.
Serve ao menos para indicar a presenca de erro, mas nao garante a assertividade.

4. Implementar fungoes Python para gerarmos varidveis aleatérias log-normal e normal-contaminada
elipticas multivariadas.

Chapter 5

Algoritmos para Médias, Variancias e
Covariancias

Muitos algoritmos para o calculo de médias, varidncias e covaridncias sdo imprecisos, podendo gerar
resultados finais contendo grandes erros. A necessidade de utilizarmos algoritmos eficientes para realizarmos
estas tarefas simples sdo evidentes e serdo descritos neste capitulo.

5.1 Introducao

Felizmente o Python utiliza algoritmos precisos para cdlculo da média, da varidncia e de covariancia.
Vamos buscar esclarecer como a utilizagdo de algoritmo ineficientes podem levar a resultados inconsistentes
e imprecisos. Nosso objetivo neste capitulo é apresentar os algoritmos eficientes para estimarmos estes
parametros quando as férmulas convencionais podem falhar se utilizadas nos algoritmos diretamente.

Estes algoritmos eficientes sdo particularmente tteis quando os dados possuem grande magnitude ou
estao muito préximos de zero. Neste caso particular, algumas planilhas eletrénicas, como o Excel nas
suas versOes mais antigas, podiam falhar [McCullough and Wilson, 1999]. O conhecimento de algoritmos
que conduzirdo a maiores precisoes numéricas pode levar o pesquisador a ndo cometer os mesmos erros
encontrados em alguns softwares.

5.2 Algoritmos Univariados

A ideia bésica de utilizarmos algoritmos para média, para a soma de poténcias dos desvios em relacao
a média ou para soma de produtos de desvios é aplicarmos recursivamente as féormulas existentes. Se
desejamos, por exemplo, obter a média de n observagoes, podemos inicialmente calcular a média da
primeira observacao, que é a propria. Em um segundo estagio, propor uma expressao para atualizarmos a
média da primeira observagdo, contemplando a segunda e assim sucessivamente. O mesmo procedimento
de atualizagdo é aplicado as varidncias ou as covaridncias, no caso de termos mais de uma variavel.

Para uma amostra de tamanho n dada por X, Xo, - -+, X,,, a média e a varidncia amostral convencionais
sao obtidas, respectivamente, por:

>ox
X = % (5.1)

7

78 CHAPTER 5. ALGORITMOS PARA MEDIAS, VARIANCIAS E COVARIANCIAS

:n—l n

X;
oo e B .
i=1

Alguns algoritmos existentes procuraram melhorar os algoritmos dos livros textos que sdo as férmulas das
equagoes (Equation 5.1 e Equation 5.2) procurando fazer adaptagdes, repassando a amostra duas vezes.
Estes algoritmos podem ser eficientes do ponto de vista da precisdo, mas nao sao rapidos, justamente por
repassarem duas vezes os dados. West [1979] propos utilizar um algoritmo que faz uma tnica passada,
atualizando a média e a varidncia em cada nova observacdo. Podemos facilmente mostrar para uma
amostra de tamanho n, que a média é igual a X; se n =1, (X7 + X3)/2 se n = 2 e assim por diante. No
(k — 1)-ésimo passo podemos especificar o estimador da média por:

k—1
DX
A

No k-ésimo passo teremos observado X; e a média atualizada é:

X, == (5.3)

A pergunta que fazemos é “podemos expressar a média do k-ésimo passo em fungao da média do (k — 1)-
ésimo passo?” A resposta a esta pergunta é sim e o resultado nos fornece o algoritmo desejado. A partir
da equagao (Equation 5.3) obtemos:

k—1
> Xit Xi
X, ==L -
k-1
(k—1) ZXi
i=1 + &
(k—1)k k
_(E-1)X1 | X
k k
5 KXp—1 | Xg
ety
resultando na equacao recursiva final
S Xi — X
Xp = Xpoy + 2F p kol (5.4)

para 2 < k < n, sendo que X = X;.

Da mesma forma se definirmos a soma de quadrados corrigidas das k primeiras observagoes amostrais

5.2. ALGORITMOS UNIVARIADOS 79

)

W2y, :ZX? e
=1

1 <k <n por:

veremos que a variancia correspondente é dada por S? = W2;/(k — 1). Se expandirmos esta expressio
isolando o k-ésimo termo e simplificarmos a expressao resultante teremos:

k-1 2
> X+ Xk>

o
W2, =Y X7+ X7 - = -
=1

= W2+ k(X — X)) /(k— 1)

A expressao que desenvolvemos (Equation75.5) é equivalente a apresentada por West [1979]. Isso pode ser
demonstrado facilmente se substituirmos X}, obtida na equagao (Equation 5.4) na equagdo (Equation 5.5),
de onde obtivemos:

- 2
W2, =W2_1+ (k—1) (X — Xp—1) /k (5.6)
para 2 < k < n, sendo que W2; = 0. A variancia é obtida por S? = W2,,/(n — 1).

Para demonstrarmos diretamente a expressao (Equation 5.6) temos:

k—1 2
k—1 (Z Xi+ Xk)
2 —_

k
=1
k—1 2 k—1
k1 < Xi) +2XkZXi+X;3
_ X2 4 x2 _ \i=l i=1
g i + k k
k—1 2 k—1
- (k—1) (Z Xi> +2(k = 1)Xe Y Xi+ (k-)X}
— X2 X2 _ =1 =1
ot k(k—1)
i=1
k—1 2 k—1 2 k—1
- <Z Xi) (Xi> 20k —) Xe Y X, ,
_ x2 _ \i=l X2 i=1 . i=1 A
‘ r—1 T (k—1) k(k—1) k
i=1
k—1 2 k—1
> X 2k —)X > X;
—W2 4 il _ i=1 (k — 1)X13
T k(= 1) k(k—1) k
(k—1DX?, 20k—1)XpXp 1 (k—1)X?
= 2 _ —
w k-1t L L L ’

resultando em

W2 = W2y + (k— 1) (Xi — Xx1)” /k.

80 CHAPTER 5. ALGORITMOS PARA MEDIAS, VARIANCIAS E COVARIANCIAS

Podemos generalizar essa expressdo para computarmos a covariancia S, ,y entre uma varidvel X e outra
Y. A expressdo para a soma de produtos é dada por:

Wzk,(x,y) = W2k—1,(m,y) + (k — 1) (Xk - kal) (Yk — kal) /k (5.7)
para 2 < k < n, sendo W2y) = 0. O estimador da covaridncia ¢ obtido por Si;) = W2, (54)/(n —1).

Podemos observar, analisando todas estas expressoes, que para efetuarmos os calculos da soma de
quadrados e da soma de produtos corrigida necessitamos do calculo das médias das varidveis no k-ésimo
passo ou no passo anterior. A vantagem é que em uma unica passagem pelos dados, obtemos todas as
estimativas. Podemos ainda estender estes resultados para obtermos somas das terceira e quarta poténcias
dos desvios em relacdo a média. As expressoes que derivamos para isso sao:

(kz — 3k + 2)(Xk — Xk,1)3 B 3(Xk - kal)WQkfl

W3 =W3,_1+ 2 A (5.8)
e
k3 — 4k? + 6k — 3) (X1 — Xp_1)*
Wi, =Wda,_1 + (+ 3)(k k 1) +
_ _ (5.9)
6(Xp — Xp—1)?W21 4(Xp — X 1)W3_1
+ 52 - z

para 2 < k <n, sendo W3; =0e W4; = 0.

Desta forma podemos implementar a funcdo medsq() que retorna a média, a soma de quadrado, cubo e
quarta poténcia dos desvios em relacdo a média e varidncia a partir de um vetor de dados X de dimensao
n.

funcdo para retornar a média, somas de desvios em relacgdo
a média # ao quadrado, ao cubo e quarta poténcia e varidncia
def medsq(x):
n = len(x)
if (n <= 1):
print('Vetor deve ter mais de 1 elemento!')
return
xb = x[0]
w2 =0

for j in range(l, n):
d = x[j] - xb
i=3j+1.0
wh = wd + (i*x3 - 4 * i*x2 + 6 * i — 3) * d**x4 / ix*3 + \
6 x w2 x d**2 / ixx2 - 4 *x w3 x d / i
w3 = w3 + (i*%2 - 3 *x 1 + 2) * d**3 / i*¥2 - 3 * w2 x d / i
w2 = w2 + (4 - 1) * dx*2 / i
xb =xb+d/ i
s2 =w2 / (n- 1)
res = {'media': xb, 'varidncia': s2, 'SQ2': w2, 'W3': w3, 'W4': w4}
return res
Exemplo
x=1[1, 2, 3, 4, 5, 7, 8]
res = medsq(x)
for key in res.keys():
print(key, ":", res[key])

5.3. ALGORITMOS PARA VETORES MEDIAS E MATRIZES DE COVARIANCIAS 81

media : 4.285714285714286
varidncia : 6.571428571428572
SQ2 : 39.42857142857143

W3 : 22.04081632653064

W4 : 391.4518950437319

5.3 Algoritmos para Vetores Médias e Matrizes de Covariincias

Vamos apresentar nesta secdo a extensao multivariada para obtermos o vetor de médias e as matrizes
de somas de quadrados e produtos e de covariancias. Por essa razdo ndo implementamos uma fungao
especifica para obtermos a covaridncia entre duas variaveis X e Y. Seja uma amostra aleatéria no espago
RP dada por X, Xo, --+, Xj, -+, X, sendo que estes vetores serdo dispostos em uma matriz X de
dimensdes (n X p). Para estendermos os resultados da sec¢ao anterior, utilizaremos as mesmas expressoes,
tomando o devido cuidado para adapté-las para lidar com operacdes matriciais e vetoriais. Assim, para
estimarmos o vetor de médias populacionais, em vez de utilizar o estimador cléssico dos livros textos dado
por

X — 1=1
n 9
utilizaremos a expressao recursiva dada por
- Xy — X
Xj = Xp g + 2L (5.10)

k
para 2 < k < n, sendo que X, = X;.

Da mesma forma, a adaptagdo para p dimensoes da expressdo (Equation 5.6) é direta e o resultado obtido

e:

Wi=Wi g+ (k= 1) (X — K1) (X — X)) | /k (5.11)

para 2 < k < n, sendo W1 = 0, uma matriz de zeros de dimensoes (p x p). O estimador da matriz de
covariancias é obtido por S = W, /(n — 1).

Implementamos a fun¢ao medcov() apresentada a seguir para obtermos o vetor de médias, a matriz de
somas de quadrados e produtos e a matriz de covaridncias. O argumento desta funcdo deve ser uma matriz
de dados multivariados com n linhas (observagoes) e p colunas (varidveis). O programa resultante e um
exemplo sao apresentados na sequéncia. Escolhemos um exemplo onde geramos uma matriz de dados de
uma normal multivariada.

funcdo para retornar o vetor de médias, a matriz de
somas de # quadrados e produtos e a matriz de covariéncias
import numpy as np
def medcov(x):
n = x.shape[0]
p = x.shape[1]
if (n <= 1):
print('Matriz deve ter mais de 1 linha!')
return
xb = x[0,:]
w = np.zeros((p, p))
for j in range(1, n):

82 CHAPTER 5. ALGORITMOS PARA MEDIAS, VARIANCIAS E COVARIANCIAS
d = x[j,:] - xb
i=3j+1.0
w=w+ (i - 1) * np.outer(d, d) / i
xb =xb+d/ 1
s=w/ (o-1)
res = {'media': xb, 'covaridncia': s, 'SQP': w}
return res
Exemplo
n = 1000
p=>5
x = np.random.multivariate_normal (np.zeros(p) ,np.identity(p),n)
res = medcov(x)
for keys,values in res.items():
print (keys)
print (values)
comparar com resultado da nossa funcdo
np.cov(x, rowvar = False)
np.mean(x, axis = 0)
media
[-0.01276798 -0.04035919 0.02005495 0.00904786 0.02885317]
covariéncia
[[1.01813024 -0.01220918 -0.00114428 0.04807771 -0.0222148]
[-0.01220918 1.01289346 0.02455342 0.05647323 -0.01660217]
[-0.00114428 0.02455342 1.03375912 0.02725577 -0.00796194]
[0.04807771 0.05647323 0.02725577 0.99081434 -0.02314937]
[-0.0222148 -0.01660217 -0.00796194 -0.02314937 0.98379871]]
SQP
[[1017.11210583 -12.19697261 -1.1431331 48.02963571 -22.19258359]
[-12.19697261 1011.88056912 24.52886389 56.41675343 -16.58556636]
[-1.1431331 24.52886389 1032.72536475 27.22851107 -7.95397404]
[48.02963571 56.41675343 27.22851107 989.82352575 -23.12621715]
[-22.19258359 -16.58556636 -7.95397404 -23.12621715 982.81490942]]
array([[1.01813024, -0.01220918, -0.00114428, 0.04807771, -0.0222148],
[-0.01220918, 1.01289346, 0.02455342, 0.05647323, -0.01660217],
[-0.00114428, 0.02455342, 1.03375912, 0.02725577, -0.00796194],
[0.04807771, 0.05647323, 0.02725577, 0.99081434, -0.02314937],
[-0.0222148 , -0.01660217, -0.00796194, -0.02314937, 0.98379871]1])
array([-0.01276798, -0.04035919, 0.02005495, 0.00904786, 0.02885317])

Felizmente, devido ao Python (numpy) usar precisdo dupla e utilizar algoritmos de 6tima qualidade para
estas tarefas, ndo precisaremos nos preocupar com a implementacgao de fungdes como as apresentadas neste
capitulo. Mas se formos utilizar um compilador da linguagem Pascal, Fortran ou C e CTT, deveremos
fazer uso destes algoritmos, pois somente assim alcangaremos elevada precisao, principalmente se tivermos
lidando com dados de grande magnitude ou muito préximos de zero.

5.4 Exercicios

1. Mostrar a equivaléncia existente entre as expressoes (Equation 5.5) e (Equation 5.6).

2. Implementar em Python uma fungio para obtermos a soma de produtos, equacio (Equation 5.7), e

5.4.

EXERCICIOS 83

covariancia entre as n observagoes de duas variaveis e cujos valores estao dispostos em dois vetores X
e Y. Criar uma matriz com n linhas e p = 2 colunas de algum exemplo e utilizar a fun¢do medcov ()
para comparar os resultados obtidos.

. Os coeficientes de assimetria e curtose amostrais sdo func¢oes das somas de poténcias dos desvios em

relagio a média. O coeficiente de assimetria é dado por v/b; = (W3, /n)/(W2,/n)%/? e o coeficiente
de curtose é by = (W4, /n)/(W2,/n)?. Implementar uma funcio Python, utilizando a fungio
medsq() para estimar o coeficiente de assimetria e curtose univariados.

. Utilizar uma amostra em uma area de sua especialidade e determinar a média, varidncia, soma de

quadrados, soma de desvios ao cubo e na quarta poténcia. Determinar também os coeficientes de
assimetria e curtose.

84

CHAPTER 5. ALGORITMOS PARA MEDIAS, VARIANCIAS E COVARIANCIAS

Chapter 6
Aproximacao de Distribuicoes

Algoritmos para a obtencdo de probabilidades foram alvos de pesquisas de muitas décadas e ainda
continuam sendo. A importancia de se ter algoritmos que sejam rapidos e precisos é indescritivel. A maior
dificuldade é que a maioria dos modelos probabilisticos ndo possui fun¢ao de distribuicdo explicitamente
conhecida. Assim, métodos numeéricos sofisticados sao exigidos para calcularmos probabilidades. Um outro
aspecto é a necessidade de invertermos as fungoes de distribuicdo para obter quantis da variavel aleatoria
para uma probabilidade acumulada conhecida. Nos testes de hipéteses e nos processos de estimacao por
intervalo e por regido quase sempre utilizamos estes algoritmos indiretamente sem nos darmos conta disso.

Neste capitulo vamos introduzir estes conceitos e apresentar algumas ideias basicas de métodos gerais
para realizar as quadraturas necessarias. Métodos numéricos particulares serdo abordados para alguns
poucos modelos. Também abordaremos separadamente os casos discreto e continuo. Para finalizarmos
apresentaremos as principais func¢oes pré-existentes do Python para uma série de modelos probabilisticos.

6.1 Introducao

Nao temos muitas preocupagoes com a obtencao de probabilidades e quantis, quando utilizamos o Python,
pois a maioria dos modelos probabilisticos e das fungoes especiais ja estd implementada. Nosso objetivo
estd além deste fato, pois nossa intencdo é buscar os conhecimentos necessarios para ir adiante e para
entendermos como determinada funcao opera e quais sdo suas potencialidades e limitacoes.

Vamos iniciar nossa discussdo com a distribuicdo exponencial para chamarmos a atengdo para a principal
dificuldade existente neste processo. Assim, escolhemos este modelo justamente por ele ndo apresentar
tais dificuldades. Considerando uma variavel aleatéria X com distribuicao exponencial com parametro A,
temos a fun¢do densidade

f@) =X >0 (6.1)

e a fun¢ado de distribuicao
F(z)=1-—e72 (6.2)

Para este modelo probabilistico podemos calcular probabilidades utilizando a funcdo de distribuigao
(Equation 6.2) e obter quantis com a fungdo de distribui¢do inversa que é dada por:

_ —(@-p)

qg=F"1(p) 3 (6.3)

Implementamos, em Python, as fungoes densidade, de distribuigdo e inversa da distribuicao e as denomi-
namos dexp, pexp e qexp, respectivamente. Estas funcoes sdo:

85

86 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

import numpy as np
funcdo densidade exponencial
£f(x) = lamb * exp(-lamb * x)
def dexp(x, lamb = 1):
if type(x) is int or type(x) is float:
x = np.array([x])
fx = np.zeros(len(x))
if any(x < 0):
fx[x >= 0] = lamb * np.exp(-lamb * x[x >= 0])
return fx
else:
fx = lamb * np.exp(-lamb * x)
return fx

funcdo de distribuig8o exponencial
F(x) = 1 - exp(-lamb * x)
def pexp(x, lamb = 1):
if type(x) is int or type(x) is float:
x = np.array([x])
Fx = np.zeros(len(x))
if any(x < 0):
Fx[x >= 0] = 1 - np.exp(-lamb * x[x >= 0])
return Fx
else:
Fx = 1.0 - np.exp(-lamb * x)
return Fx

funcdo inversa da distribuigdo exponencial
q = -log(1 - p) / lamb
def gexp(p, lamb = 1):
if type(p) is int or type(p) is float:
p = np.array([pl)
q = np.zeros(len(p))
if any(p >= 1) or any(p < 0):
ql(>=0) & (p < 1)] = -np.log(1 - pl(p >= 0) & (p < 1)) / lamb
mask_invalid = (p >= 1) | (p < 0)
q[mask_invalid] = np.nan
print ('NaN produzidos!')
return q
else:
q = -np.log(l - p) / lamb
return q

Exemplo

lamb = 0.1

x = np.array([29.95732, -0.03])

print('fdp de valores negativos: ',dexp(x, lamb))
print('cdf de valores negativos: ',pexp(x, lamb))
p = np.array([-0.5, 0.95, 1.0])

print('icdf de valores impréprios: ',qexp(p, lamb))
x = 29.95732

6.1. INTRODUCAO 87

p = 0.95

print('fdp: ',dexp(x, lamb))
print('cdf: ',pexp(x, lamb))
print('icdf: ',qexp(p, lamb))

fdp de valores negativos: [0.005 0.]

cdf de valores negativos: [0.94999999 0.]
NaN produzidos!
icdf de valores impréprios: [nan 29.95732274 nan]

fdp: [0.005]
cdf: [0.94999999]
icdf: [29.95732274]

Estas trés fungoes foram facilmente implementadas, pois conseguimos explicitamente obter a funcao de
distribuigdo e sua inversa. Se por outro lado tivéssemos o modelo normal

2
flx) = L eXP{—W} (6.4)
V2no? 202

nao poderiamos obter explicitamente a funcdo de distribuicdo e muito menos a funcéo inversa da funcdo
de distribuicdo de probabilidade. Como para a grande maioria dos modelos probabilisticos encontramos os
mesmos problemas, necessitamos de métodos numéricos para obter estas fungdes. Por essa razao iremos
apresentar alguns detalhes neste capitulo sobre alguns métodos gerais e especificos de alguns modelos. No
caso discreto podemos utilizar algoritmos sequenciais, porém como boa parte dos modelos probabilisticos
possuem relagdo exata com modelos continuos, encontramos os mesmos problemas.

Uma outra preocupagao que devemos ter é em relacdo a possiveis entradas incorretas do usuario nos
argumentos das fungoes. Nao tivemos muitas preocupacoes até o momento com possiveis erros em funcgao
de chamadas de nossas fungbes com argumentos incorretos. Para ilustrarmos, vamos considerar somente
a fun¢éo densidade de probabilidade da exponencial. Neste caso, se A > 0, e os valores de x positivos
ou nulos, ndo termos nenhum problema. Se por outro lado, os valores de = forem negativos, entao o
valor da densidade deve ser zero. Este tipo de preocupacao existiu na implementacao da fungao dexp
anterior. Entretanto, podemos ter valores do parametro A nulo ou negativo incorretamente na chamada da
funcéo, o que nao é valido e nenhuma protecédo foi feita. Assim, é prudente que alguns problemas sejam
antevistos e resultados coerentes sejam retornados. Neste caso deve-se retornar o resultado nan, pois a
funcao densidade nao é valida nestas condigbes. Além disso, o argumento lamb da funcao é considerado
um escalar, mas o argumento x pode ser um vetor. Podemos também tratar este caso, considerando tratar
ambos argumentos como vetores, mesmo que ndo mudemos o valor escalar do argumento lamb padrao e
fazer um ajuste nas dimensoes dos mesmos, caso eles tenham tamanhos diferentes. O programa a seguir
ilustra isso e utiliza o np.resize para realizar este ajuste.

import numpy as np

def dexp(x, lamb=1):
Converter para arrays e garantir que s&o floats
x_arr = np.array(x, ndmin=1, dtype=float)
lamb_arr = np.array(lamb, ndmin=1, dtype=float)

Expandir para terem o mesmo tamanho
size = max(len(x_arr), len(lamb_arr))

x_expanded = np.resize(x_arr, size)
lamb_expanded = np.resize(lamb_arr, size)

88 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

Inicializar resultado com NaN para lidar com casos invalidos
result = np.full(size, np.nan, dtype=float)

Mascara para valores validos de lambda (positivos e n&o zero)
valid_lambda = lamb_expanded > O

Mascara para valores validos de x (nfo negativos)
valid_x = x_expanded >= 0

Mascara combinada: x >= 0 E lambda > O
valid _mask = valid_x & valid_lambda

Calcular a densidade apenas para casos validos
result[valid_mask] = (lamb_expanded[valid_mask]*
np.exp(-lamb_expanded[valid_mask]*x_expanded[valid_mask]))

Para x < 0 COM lambda valido: resultado é O
Para x < 0 COM lambda invalido: mantém NaN (ja inicializado)
result [(x_expanded < 0) & valid_lambda] = 0.0

Retornar formato apropriado

if np.isscalar(x) and np.isscalar(lamb):
return float(result[0])

else:
return result

Testes

print("=== Testes da fungdo dexp ===")
Caso 1: lambda positivo (normal)
print("\nl. Lambda positivo:")
print(f"dexp(1, 1) = {dexp(1, 1):.4f}")

Caso 2: lambda zero
print("\n2. Lambda zero:")
print (£"dexp(1, 0) = {dexp(1l, 0)}")

Caso 3: lambda negativo
print("\n3. Lambda negativo:")
print(£"dexp(1l, -1) = {dexp(1, -1)}")

Caso 4: mistura de lambdas validos e invalidos
print("\n4. Mistura de lambdas:")

x = [1, 2, 3]

lambdas = [0.5, 0, -1]

result = dexp(x, lambdas)

print (£"x = {x}")

print(f"lambdas = {lambdasl}")

print(f"resultado = {resultl}")

Caso 5: x negativo (sempre retorna O, mesmo com lambda invalido)
print("\n5. x negativo:")
print (f"dexp(-1, 0) = {dexp(-1, 0)}")

6.1. INTRODUCAO

print (f"dexp(-1, -1) = {dexp(-1, -1)}")

Caso 6: vetores com reciclagem

print("\n6. Reciclagem com lambda invalido:")
x = [1, 2, -3, 4]

lamb = [0.5, -0.5]

result = dexp(x, lamb)

print (£"x = {x}")

print(f"lamb = {lamb}")

print (f"resultado = {result}")

Caso 7: verificagdo de calculo correto
print ("\n7. Verificagio de valores esperados:")
test_cases = [

(0, 1, 1.0), # £(0) = lambda

(1, 1, np.exp(-1)), # £(1) = e -1

(2, 0.5, 0.5 * np.exp(-1)) # £(2) = 0.5 x e"-1

for x_val, lamb_val, expected in test_cases:
result = dexp(x_val, lamb_val)
print (f"dexp({x_val}, {lamb_val}) = {result:.4f} (esperado: {expected:.4f})")

=== Testes da fungdo dexp ===

1. Lambda positivo:
dexp(1, 1) = 0.3679

2. Lambda zero:
dexp(1l, 0) = nan

3. Lambda negativo:
dexp(1l, -1) = nan

4. Mistura de lambdas:

x = [1, 2, 3]

lambdas = [0.5, 0, -1]

resultado = [0.30326533 nan nan]

5. X negativo:
dexp(-1, 0) = nan
dexp(-1, -1) = nan

6. Reciclagem com lambda invalido:

x = [1, 2, -3, 4]

lamb = [0.5, -0.5]

resultado = [0.30326533 nan O. nan]

7. Verificagdo de valores esperados:
dexp(0, 1) = 1.0000 (esperado: 1.0000)
dexp(l, 1) = 0.3679 (esperado: 0.3679)

90 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

dexp(2, 0.5) = 0.1839 (esperado: 0.1839)

Neste caso, a funcao faz um redimensionamento automético dos vetores por repeticdo para equalizar seus
tamanhos antes do célculo elemento a elemento. Isso ocorre com o uso do np.resize, apds o tamanho
maximo em relagdo ao tamanho de ambos os vetores ser obtido. Se os tamanhos sdo diferentes, faz-se uma
reciclagem incompleta do vetor menor através de repeticao ciclica, truncando o padrao quando atinge o
tamanho do vetor maior, sem completar o Ultimo ciclo. Isso quer dizer que se faz uma reciclagem ciclica
do vetor menor, interrompendo a repeticao quando atinge o tamanho exato do vetor maior, mesmo que
isso signifique deixar o tltimo ciclo incompleto. Depois de ajustados os tamanhos dos vetores, cria-se um
vetor result para os resultados com nan. Assim, se tiver valores invalidos, obtém-se uma méscara booleana
combinada de valores de z nio negativos e de lamb positivos. Calcula-se a densidade apenas onde estas
duas condig¢bes ocorrem simultaneamente e substitui os nan de result pelos valores da densidade. O
problema é que se o z for negativo e o lamb for positivo, o valor da densidade deve ser zero e ela nao
é computada com o uso da méscara anterior. Mas se z for negativo e lambda invalido, mantém os nan
enteriormente definidos em result. Por definicao, a funcao densidade de probabilidade existe para todos os
reais, desde que os parametros dos modelos estejam corretamente definidos. O programa faz um ajuste
especifico final para o caso onde z é negativo mas lamb é positivo, com o comando result/(z_expanded <
0) & wvalid_lambda] = 0.0 (veja o caso 6).

6.2 Modelos Probabilisticos Discretos

Vamos apresentar algoritmos para obtencao da fungdo de probabilidade, funcao de distribuicao de
probabilidade e sua inversa para os modelos discretos que julgamos mais importantes, os modelos binomial
e Poisson. Vamos iniciar nossa discussao pelo modelo binomial. Considerando uma variavel aleatéria X
com distribuicao binomial, entdo a sua fungao de probabilidade é dada por:

Px =a) = ()1 p)n (65

em que n é o tamanho da amostra ou nimeros de ensaios de Bernoulli independentes com probabilidade de
sucesso p e x é o numero de sucessos, que pertence ao conjunto finito 0, 1, - - -, n. A funcéo de distribuicdo
de probabilidade é dada por:

P =3 (})pra-n. (6.6)

t=0 t

Vimos no capitulo 3, equacdo (Equation 3.14) que podemos obter as probabilidades acumuladas de forma
recursiva. Sendo P(X = 0) = (1 — p)", obtemos as probabilidades para os demais valores de X, ou seja,
paraz = 1, - - -, n de forma recursiva utilizando a relacdo P(X = x) = P(X = z—1)[(n—z+1)/z][p/(1—p)].
Podemos sintetizar da seguinte forma:

P(X:x):P(X:x—U(%_T)’

emquer=p/(l1-p)eg=r(n+1), paraz=2,3, -, n.

Este mesmo algoritmo apropriadamente modificado é utilizado para obtermos as probabilidades acumuladas
e a inversa da fung¢ao de distribuicdo. Se os valores de n e de p forem grandes, este algoritmo pode ser
ineficiente. Para o caso do pardmetro p ser grande (préximo de um) podemos utilizar a propriedade da
binomial dada por: se X ~ Bin(n,p), entdo Y =n — X ~ Bin(n,1 — p). Assim, podemos, por exemplo,
obter P(X = z) de forma equivalente por P(Y = n —x) e P(X < z) = P(Y > n — z), que pode ser
reescrito por Fx(z) =1— Fy(n —x — 1), exceto para x = n, em que Fx(z) = 1. Desta forma trocamos
de variavel para realizar o calculo e retornamos o valor correspondente a do evento original.

6.2. MODELOS PROBABILISTICOS DISCRETOS

funcdo de probabilidade e distribuicg&o
da binomial(n, p)
def dpbinom(x, n, p = 0.5):
if p > 0.5:
pp=1-p
XX =10 - X
else:
pp =
aq =1 - pp
if (xx < 0 or xx > n):
f=0
if xx < O:
cdf =1
else:
cdf =0
return {'pdf': f,'cdf': cdf}
else:
f = qg**n
r=pp/ qq
g=r * (n+ 1)
cdf = £
u=20
while(u < xx):
u+=1
fx=(g/u-r€
cdf += £
if p > 0.5:
cdf =1 - cdf + £ # pois 1-F(n-x) e n8o 1-F(n-x-1) foi calculado
return {'pdf': f,'cdf': cdf}

o)

inversa da funcgdo distribuigdo
binomial(n, p)
def gbinom(prob, n, p):
if prob < 0 or prob > 1:
return float("nan"
if prob == 1:
return n
if prob == 0:
return 0O

P
=r * (n+ 1)
0

while (prob - cdf) >= 1l.e-14:
x +=1
f*=(g/ x-1)
cdf += £

return x

Exemplo de uso

92 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

= 0.5713131
= b # retire a toleradncia, gbinom falha
= 20
res = dpbinom(x, n, p)
for keys,values in res.items():
print (keys)
print (values)
prob = res['cdf']
print('inversa CDF',gbinom(prob, n, p))

B X 'O
|

pdf
0.0028636362867051975
cdf
0.0036697111708624904
inversa CDF 5

Se usarmos a propriedade de que se X é binomial com pardmetros n e p, entdo n — X também é binomial
com parametros n e 1 — p. Como o algoritmo é mais eficiente quando p < 0,5, pois ¢ = 1 — p estd mais
préximo de 1 e a velocidade de execugéo do algoritmo é proporcional a np. Assim, se ganha em tempo de
processamento e precisdo, se p > 0,5 e nods realizarmos a troca para n — X. O script a seguir apresenta
esta alteragdo na fungdo gbinom:

inversa da fungdo distribuigdo
binomial(n, p), com troca se p > 0.5
def qgbinom(prob, n, p):
if prob <= 0 or prob > 1:
return float("nan"

if prob == 1:
return n
if p > 0.5:
pp=1-p
probq = 1 - prob
else:
PP = P
probg = prob
q=1-pp

q

f = qg**n
r =pp/ qq
g=r1r * (n+ 1)
X

=0
cdf = £
while ((probg - cdf) >= 1.e-11):
x +=1
f*x=(g/ x-r1)
cdf += £
if p > 0.5:

if (probg - cdf) <= 1.e-11:
Xx=n-x-1
else:
X =1n - X
return x

Exemplo de uso

6.2. MODELOS PROBABILISTICOS DISCRETOS 93

p = 0.5713131
x = 5 # retire a tolerdncia, gbinom falha
n = 20

res = dpbinom(x, n, p)

print(res)

prob = res['cdf']

print('inversa CDF',qgbinom(prob, n, p))

{'pdf': 0.0028636362867051975, 'cdf': 0.0036697111708624904%}
inversa CDF 5

A fungao de distribui¢do binomial possui uma relagio exata com a fungao distribuicao beta. Se tivermos
algoritmos para obter a beta incompleta podemos utilizar esta relacdo para obter probabilidades da
distribui¢ao binomial. A fungdo de distribuigdo binomial, F'(x), se relaciona com a fungéo beta incompleta,
Ip(a,p), da seguinte forma:

1-I(z+1ln—2z), sel0<z<n

F(w;n.p) = { 1, se x = n. (6.7)

Desta forma podemos antever a importancia de conhecermos algoritmos de integragao numérica das
distribui¢Ges continuas. Isso fica mais evidente quando percebemos que para grandes valores de n os
algoritmos recursivos sdo ineficientes e podem se tornar imprecisos. Na secdo Section 6.3 apresentaremos
alguns métodos gerais de integracdo para funcgodes continuas. No script seguinte utilizamos a relagao
(Equation 6.7) para a obtengdo da funcao de distribuicdo da binomial.

funcdo de probabilidade e distribuigdo da
binomial(n, p) a partir da relagdo com a
funcdo beta incompleta - cdf da beta
from scipy.stats import beta
import scipy.stats as sps
def pbinombeta(x, n, p = 0.5):

if p <=0 or p >= 1:

print('p deve estar no intervalo (0, 1)')

return
if (x < n):

a= x+1

b =n-x

cdf = 1 - beta.cdf(p, a, b)
else:

cdf =1

return cdf

Exemplo

p = 0.5713131
n = 20

x =3

pbinombeta(x, n, p)
sps.binom.cdf(x, n, p)

np.float64(0.00013459360572398715)
np.float64(0.00013459360572400553)

A distribui¢do Poisson é a segunda que consideraremos. Existe relagdo da fungdo de distribuicdo da

94 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

Poisson com a gama incompleta. Se uma varidvel aleatoria discreta X com valores z =0, 1, 2, 3, ---
possui distribui¢do Poisson com pardmetro A, entdo podemos definir a fungdo de probabilidade por:

P(X =2x)= . (6.8)

Podemos obter probabilidades desta distribuigao utilizando a relacdo da gama incompleta com a funcao
de distribuicao Poisson
Fzl\)=1-L(a=z+1), x=0,1,2,---. (6.9)

sendo

1

_ * —tya—1
Im(a)——r(a)/o et dt,

a funcao gama incompleta, para valores de x > 0. O script para isso é

funcdo de probabilidade e distribuigdo da
Poisson(lamb) usando a relagdo com a fungdo
gama incompleta - cdf da gama
from scipy.stats import gamma
import scipy.stats as sps
def pgama(x, lamb = 1.0):

if lamb <= 0:

print('lambda deve ser maior que 0')

return
if (x >= 0):

a= x+1.0

cdf = 1 - gamma.cdf(lamb, a)
else:

cdf =0

return cdf

Exemplo

lamb = 0.85

x = 3.0

pgama(x, lamb)
sps.poisson.cdf(x, lamb)

np.float64(0.9888689674521238)
np.float64(0.9888689674521238)

6.3 Modelos Probabilisticos Continuos

Para obtermos a funcdo de distribuigdo ou a inversa da fun¢do de distribuicdo de modelos probabilisticos
continuos via de regra devemos utilizar métodos numéricos. Existem excegdes como, por exemplo, o
modelo exponencial descrito no inicio deste capitulo. A grande maioria dos modelos probabilisticos
utilizados atualmente faz uso de algoritmos especialmente desenvolvidos para realizar quadraturas em cada
caso particular. Estes algoritmos sdo, em geral, mais precisos do que os métodos de quadraturas, como
sdo chamados os processos de integracdo numérica. Existem varios métodos de quadraturas numéricas
como o método de Simpson, as quadraturas gaussianas e os métodos de Monte Carlo. Vamos apresentar
incialmente os métodos de Simpson e de Monte Carlo, que sdo mais simples e sdo menos precisos.

6.3. MODELOS PROBABILISTICOS CONTINUOS 95

Vamos utilizar o modelo normal para exemplificar o uso desses métodos gerais de integracdo nas fungoes
continuas de probabilidades. Uma varidvel aleatéria X com distribuicdo normal com média p e variancia
o? possui funcdo densidade dada por:

fla) = M;T?exp {@20?2} . (6.10)

A funcao de distribuicdo de probabilidade ndo pode ser obtida explicitamente e é definida por:

Flz) = /m lexp{—(t;‘gy}dt. (6.11)

—oo V2102

Em geral utilizamos a normal padrao para aplicarmos as quadraturas. Neste caso a média é u=0e a
varidncia é 02 = 1. Assim, representamos frequentemente a densidade por ¢(z), a fungdo de distribuicio
por ®(2) e a sua inversa por ®~!(p), em que 0 < p < 1. A variavel Z é obtida de uma transformacio
linear de uma varidvel X normal por Z = (X — pu)/o.

Vamos apresentar de forma bastante resumida a regra trapezoidal estendida para realizarmos quadraturas
de fungoes. Seja f; o valor da fungdo alvo no ponto x;, ou seja, f; = f(x;), entdo a regra trapezoidal é
dada por:

[pwie = 5+ 1)+ 0w, (6.12)

em que h = x,, — 71 e o termo de erro O(h3 ") significa que a verdadeira resposta difere da estimada
por uma quantidade que é o produto de h? pelo valor da segunda derivada da funcdo avaliada em algum
ponto do intervalo de integracdo determinado por x; e z,, sendo x1 < .

Esta equacao retorna valores muito imprecisos para as quadraturas da maioria das funcoes de interesse
na estatistica. Mas se utilizarmos esta fungdo n — 1 vezes para fazer a integragdo nos intervalos (x1,x2),
(x2,23), "+, (Tn-1,%,) e somarmos os resultados, obteremos a férmula composta ou a regra trapezoidal
estendida por:

/% f(@dw:h(gl+f2+f3+---+fn_1+f") +O(W). (6.13)

2 n?
em que h = (z, —z1)/(n —1).

Uma das melhores forma de implementar a funcao trapezoidal é discutida e apresentada por Press et al.
[1992]. Nesta implementagao inicialmente é tomada a média da fungao nos seus pontos finais de integraciao
1 € T,. Sao realizados refinamentos sucessivos. No primeiro estdgio devemos acrescentar o valor da
funcao avaliada no ponto médio dos limites de integragao e no segundo estagio, os pontos intermediarios
1/4 e 3/4 sdo inseridos e assim sucessivamente.

Podemos implementar esta rotina de forma iterativa, dindmica e recursiva:
¢ Calculamos o valor inicial da integral S considerando os pontos de extremo, da seguinte forma:

(b—a)

S:2

(f(a) + f(b)).

e No passo n = 2, atualizamos S, inserindo um valor z = a + (b — a)/2 no ponto médio entre a e
b. Calculamos f(x) e armazenamos em sum. Definimos it como sendo o nimero de pontos a ser

96

CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

inserido entre a e b por it = 2”2, em que n = 2, indica que estamos no segundo passo. Atualizamos
S, por

S = % (S 4+ (b—a) x sum/it). (6.14)

Fazemos n = 3, 4, 5, - - - e repetimos o passo 2, atualizando S a partir de seu antigo valor computado
no passo anterior usando (Equation 6.14). Para cada valor de n devemos comparar os valores do
passo anterior e atual até que uma dada precisdo seja alcancada.

e Veja que sum do passo 2 depende de it. Assim, por exemplo, se n = 3, it = 2! = 2. Devemos

computar A = (b— a)/it e os dois pontos a serem inseridos sdo z1 = a+ A/2 e x5 = x1 + A. Assim,
sum = f(x1) + f(x2).

Em um passo geral, n, temos it = 2"=2 pontos, A = (b—a)/it, 11 = a+ A/2 e xp = 21 + A,
k=23, -, it. Assim, sum = ZZ:1 f(xr).

Sejam func() a fungdo de interesse, a e b os limites de integragao e n o niimero de intervalos de integracao
previamente definido, entdao podemos obter a funcao trapzd() adaptando a mesma funcdo implementada

em Fortran por Press et al. [1992] da seguinte forma:

Esta rotina calcula o n-ésimo estigio de refinamento da
integragdo trapezoidal estendida, em que, func é uma

n=1, 2, etc. e o valor de s deve ser retornado a funcgédo

#
#
funcdo externa de interesse que deve ser chamada para
#
#

em cada nova chamada.

import math

def trapzd(func, a, b, s, n):
if n ==
s = 0.5 x (b - a) * (func(a) + func(b))
else:
it = 2xx(n - 2)
dl = (b - a) / it # espago entre pontos
x =a+ 0.5 xdl
soma = 0.0
for j in range(it):
soma += func(x)
x +=dl
refina o valor de s
s =0.5* (s + (b - a) *x soma / it)
return s
funcdo para executar quadraturas de
fungdes definidas em func()
até que uma determinada
precisdo tenha sido alcangada

def

gtrap(func, a, b):

eps = 1.0e-11
nmax = 30

olds = -1.e30 # impossivel valor para quadratura inicial
n = il

fim =0

s = -1.0el5 # valor arbitrario para iniciar o loop

while abs(s-olds) >= eps * abs(olds) and fim ==

olds = s
s = trapzd(func, a, b, s, n)
n=n +1

6.3. MODELOS PROBABILISTICOS CONTINUOS

if n > nmax:
fim =1
if n > nmax:
print('Limite de passos ultrapassado!')
return
return s

97

Devemos chamar a fun¢io qtrap() especificando a fun¢do de interesse func() e os limites de integracao.

Assim, para a normal padrao devemos utilizar as seguintes fungoes:

fdp da normal padréo

def dnorm(x):
fx = (1.0 / (2.0 * math.pi)**0.5) * math.exp(-x**2 / 2)
return fx

def pnorm(x):
p = qtrap(dnorm, 0.0, abs(x))
if x > 0:
p += 0.5
else:
p=0.5-p
return p

exemplo

z =1.96

print (pnorm(z))

print (sps.norm.cdf (z))

0.9750021048512256
0.9750021048517795

E evidente que temos métodos numéricos gerais mais eficientes do que o apresentado. As quadraturas
gaussianas representam uma classe de métodos que normalmente sdo mais eficientes que este apresentado.
Eventualmente, existem métodos especificos para obtermos as integrais dos principais modelos probabilisti-
cos que sao mais eficientes. A maior eficiéncia destes métodos especificos se d& por dois aspectos: velocidade
de processamento e precisdo. Se exisitirem, no Python estas rotinas especificas ja estdo implementadas.
Como ilustragio, podemos substituir a fungdo que implementamos pnorm() pela pré-existente no Python
normal.cdf () do scipy.stats. Vamos ilustrar um destes algoritmos especializados para obtermos a
funcdo de distribuicdo da normal padrido. O algoritmo de Hasting possui erro maximo de 1 x 1076 e ¢

dado por:
G sex <0
‘I)(a:)—{ 1-G sex>0
sendo G dado por

G = (a1n + a2n® + azn® + aan® + asn®)p(z)

em que

1

T 170,2316418)]

(6.15)

e a; = 0,319381530, ax = —0,356563782, as = 1,781477937, ay = —1,821255978 e a5 = 1,330274429.

98 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

O resultado da implementagdo deste procedimento é:

CDF da normal padrédo:
aproximacdo de Hasting
def phnorm(x):
eta =1/ (1 + abs(x) * 0.2316418)
al 0.319381530; a2 = -0.356563782
a3 = 1.781477937; a4 = -1.821255978
ab = 1.330274429
phi = 1 / (2 * math.pi)**0.5 * math.exp(-x * x / 2)
g = (alxetata2xeta*x*2+a3*eta**3+ad*eta**4+abkreta**5)+phi

if (x <= 0):
cdf = g
else:
cdf =1 -g

return cdf

exemplo
=1.96
= phnorm(z)

T o N

0.9750021668514388

Com o uso desta fung¢do ganhamos em precisao, principalmente para grandes valores em médulo do
limite de integracao superior e principalmente ganhamos em tempo de processamento. Podemos ainda
abordar os métodos de Monte Carlo, que sdo especialmente tteis para integrarmos fun¢des complexas e
multidimensionais. Vamos apresentar apenas uma versiao bastante rudimentar deste método. A ideia é
determinar um retangulo que engloba a fungdo que desejamos integrar e bombardearmos a regiao com
pontos aleatérios (ug,us) provenientes da distribui¢do uniforme.

Contamos o nimero de pontos sob a funcao e determinamos a area correspondente, a partir da propor-
cionalidade entre este niimero de pontos e o total de pontos simulados em relacdo a area sob a funcao
na regido de interesse em relagdo a area total do retdngulo. Se conhecemos o maximo da funcao fi,az,
podemos determinar este retdngulo completamente. Assim, o retdngulo de interesse fica definido pela base
(valor entre 0 e z; em mddulo, sendo z; fornecido pelo usuério) e pela altura (valor da densidade no ponto
de méximo). Assim, a drea deste retdngulo é A = |21|fmaz- No caso da normal padrdo, o maximo obtido
para z = 0 é frae = 1/V/27 e a drea do retangulo A = |z|/v/27. Se a drea sob a curva, que desejamos
estimar, for definida por A;, podemos gerar niimeros uniformes u; entre 0 e |z1| e ndmeros uniformes us
entre 0 e fa.- Para cada valor u; gerado calculamos a densidade f; = f(u1). Assim, a razdo entre as
areas Aj/A é proporcional a razao n/N, em que n representa o nimero de pontos (u1,us) para os quais
us < f1 e N o niimero total de pontos gerados. Logo, a integral é obtida por A1 = |z1| X fimaz X n/N, em
que z; € o valor da normal padrao para o qual desejamos calcular a drea que estd compreendida entre 0 e
|21, para assim obtermos a fun¢io de distribui¢do no ponto z1, ou seja, para obtermos ®(z1). Assim, se
z1 <0, entdo ®(2z1) = 0,5 — A; e se z; > 0, entdo P(z1) = 0,5+ A;. Veja a seguinte figura ilustrativa:

6.3. MODELOS PROBABILISTICOS CONTINUOS

0 z

Para o caso particular da normal padrao, implementamos a seguinte fungao:

Quadratura da normal padréo
via simulagdo Monte Carlo
import numpy as np
def mcpnorm(x, N = 2000):

max = 1 / (2 * math.pi)**0.5

z = abs(x)
ul = np.random.uniform(0, z, N) # 0 < ul < z
u2 = np.random.uniform(0, max, N) # 0 < u2 < max

f1 = (1/(2*math.pi)**0.5)*np.exp(-ul**2/2) # f1(ul): N(0,1)
n = len(f1[u2 <= f1])
g =n/N* max x z
if (x < 0):
cdf = 0.5 - g
else:
cdf = 0.5 + g
return(cdf)

exemplo

z = 1.96

N 1500000

mcpnorm(z, N)

print('Erro de MC: ',1 / N*x0.5)

0.9753630572428649
Erro de MC: 0.0008164965809277261

Outra forma de obtermos uma aproximagio da integral

abs(z) 1) abs(z)
/ ——e V24t = / o(t)dt
0 0

Vor

99

100 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

por Monte Carlo é gerarmos m nimeros uniformes entre 0 e abs(z), digamos z1, 22, ..., z;, € obter

abs(z)
/ o(t)dt = Az
0

em que @(t) = 1/v/2m x exp{—t?/2} é a funcdo densidade normal padrao avaliada no ponto ¢t e Az =
abs(z) — 0. A ordem de erro desse processo é dada por O(m~'/2). O programa Python para obter o valor
da fungéo de distribui¢do normal padrdo ®(z) utilizando essas ideias é apresentado a seguir. Por meio de
uma comparacdo dessa alternativa Monte Carlo com a primeira podemos verificar que houve uma grande
diminuigao do erro de Monte Carlo no cédlculo dessa integral, nessa nova abordagem. Muitas variantes e
melhorias nesse processo podem ser implementadas, mas nds nao iremos discuti-las aqui.

=1

;qu(zi)] ,

Quadratura da normal padrdo via simulagéo
Monte Carlo. Segunda forma de obter a
integral: forma cléssica
import numpy as np
import math
import scipy.stats as sps
import matplotlib
import matplotlib.pyplot as plt
def pmcnorm(z, m = 2000) :
x = np.random.uniform(0, abs(z), m)
p = (1/(2 * math.pi)**0.5)*np.exp(-(x**2)/2)

p = abs(z) * np.mean(p)
if z < O:
p=0.5-p
else:
p += 0.5
return p
Exemplo
m = 15000 # numero de pontos muito inferior ao caso anterior
z=1.96
pumcnorm(z, m) # Estimativa de Monte Carlo
p = sps.norm.cdf(z) # valor real
p
Ordem de erro: 0(m~(-1/2))
1/m**0.5

verificagdo da convergéncia

np.random.seed (1000)

x = np.random.uniform(0, abs(z), m)

pdf = (1/(2*math.pi)**0.5) * np.exp(-(x**2)/2)

if (z < 0):
cdf = 0.5 - abs(z) * np.cumsum(pdf) / np.arange(l,m+1)
else:

cdf = 0.5 + abs(z) * np.cumsum(pdf) / np.arange(1l,m+1)
plt.plot(np.arange(1l,m+1), cdf)
plt.plot(np.arange(l,m+1), [p]#*m)
plt.xlabel('Iteragdes', fontsize=15)
plt.ylabel('P(Z<=z)', fontsize=15)

np.float64(0.9752498523098085)

6.4. QUADRATURAS GAUSSIANAS 101

np.float64(0.9750021048517795)
0.00816496580927726
Text (0.5, 0, 'Iteragdes')

Text (0, 0.5, 'P(Z<=2)"')

1.05 A

1.00 |
~ e

0.85 -

0 2000 4000 6000 8000 10000 12000 14000
lteracoes

6.4 Quadraturas Gaussianas

As quadraturas gaussianas desempenham um papel preponderante na estatistica, pois os principais
algoritmos de obtencao de probabilidades e quantis utilizam tais métodos implicitamente. Nesta se¢ao,
apresentaremos, de forma bastante simplificada e sem aprofundar nos aspectos mateméaticos mais técnicos,
o principal método de quadratura gaussiana. Os interessados em uma maior pormenorizacao desses
aspectos podem consultar iniimeros livros especificos. Recomendamos por exemplo a leitura de Quarteroni
et al. [2000].

A base dessas quadraturas sdo as interpolagdes baseadas em polindmios ortogonais. Seu uso extrapola o
tema das quadraturas numéricas, podendo ser usados para aproximar solu¢oes de quadrados minimos e
diferenciagdo numérica. Uma quadratura gaussiana de n pontos é aquela que fornece resultados exatos
para a integracdo de um polinémio de grau igual ou inferior a 2n — 1. O dominio das quadraturas ¢, sem
perda de generalidade e por convengao, assumido como sendo [—1,1]. A regra geral para a quadratura
gaussiana de n pontos para uma fungao f(z), no dominio [—1, 1], é dada por

/1 f@)de = Y wif (o) (6.16)

em que x; e w; sao denominados de nés e pesos, respectivamente, da quadratura.

Os noés sao valores do intervalo [—1,1] e os pesos sdo positivos. Devemos escolhé-los de forma apropriada
para que o resultado da integral seja aproximado de forma acurada pela soma da direita. Muitas vezes,

102 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

usamos uma fungao peso w(zx;), tal que a integral (Equation 6.16) possa ser representada por

/ f(x)dz = / w(z)g(@)dz ~ 3 wig(w), (6.17)
-1 -1 i=1

em que g(z) é tal que f(z) = w(z)g(z) e w; nesse caso sdo pesos alternativos.

Por exemplo, para o caso especifico da fun¢io f(z) = €*, usando pesos w; = wy = 1 e nés 1 = /3/3 e
ro = —/3/3, no dominio de —1 a 1 resulta em

/1 e dr ~ f(V3/3) + f(—V/3/3) = 3,4882.

-1

O valor exato da integral é

1 62x 1
/ e*dr = [} = 3,6269.
4 2 |,

E surpreendente que a soma de f(x1) + f(x2) resulte em valores exatos para polinémios de grau até
3, 2n — 1, pois n = 2. O que temos que fazer é encontrar mecanismos para obter os pesos e os nds de
integracdo. Para um intervalo de integracao diferente de [—1, 1], ou seja, [a, b], b > a, temos que a seguinte
transformacao nao altera a precisao da integracao

f;f(m)dx: b;af_llf(b;aa:+a+b dx

2
b—a b—a a+b
I

Vale a pena ressaltar que os nés utilizados nas quadraturas sdo as raizes dos polinémios ortogonais de
alguma das familias gaussianas, normalmente empregadas. Entre elas, podemos citar os polinémios de
Legendre, Laguerre, Hermite, Chebyshev e Jacobi. Descreveremos apenas a quadratura Gauss-Legendre
na sequéncia.

A quadratura denominada Gauss-Legendre é utilizada para intervalos de integragio definidos por [—1,1],
podendo ser extrapolado para intervalos mais gerais, se utilizarmos a expressdo (Equation 6.18). Assim,
para o dominio [—1,1], a quadratura Gauss-Legendre pode ser aplicada por

Zwlf(xz) parraa=—-leb=1
i=1

b
/ f(z)dz ~ (6.18)
“ Z w;g(y;) para a e b reais quaisquer,
i=1
em que ¢(y) é dada por
b—a , (b—a a+b
9y) = —; f(5T+ 5) (6.19)

emquey = (b—a)x/2 + (b+a)/2.

O proéximo passo, na aplicagdo das quadraturas gaussianas, é calcular os nés e pesos para cada uma delas.
Apresentaremos isso, na forma de uma sequéncia de passos. Utilizaremos as seguintes quantidades para
todos os métodos. O escalar py que é definido por

o = / " we)da

6.4. QUADRATURAS GAUSSIANAS 103

e os vetores de coeficientes a (n x 1) e b (n —1 x 1), sendo n o ntumero de pontos da quadratura a ser
realizada.

Posteriormente, ainda utilizaremos uma matriz denotada por J, (n x n), para a qual obteremos os
autovalores e autovetores. Como utilizaremos um problema de algebra, solucionado pela obtengao de
autovalores e autovetores, esse método é conhecido como algoritmo de Golub—Welsch. Descreveremos,
inicialmente, a obtengdo dos vetores a e b e da constante yy para o método de quadratura Gauss-Legendre.
Detalhes técnicos de como isso pode ser realizado e as bases tedricas podem ser encontradas em Quarteroni
et al. [2000].

Para a quadratura Gauss-Legendre temos:
1. faga po = 2;
2.a=0(n x 1)
3. b=1[b;] (n—1 x 1), tal que

_J
NZVEE

Definidas as quantidades necessarias a, b e ug, devemos aplicar a segunda parte do algoritmo para obter
0s nos x;’s e os pesos w;’s, ¢ = 1, 2, ..., n. Utilizamos, para isso, o algoritmo de Golub—Welsch, pelo qual
determinamos a matriz J a partir dessas quantidades e determinamos seus autovalores e autovetores. A
matriz J é tridiagonal simétrica definida por

ay b1 0

b1 as bg 0 .
0 b2 as b3 0

b =

T=lo . . 0
0 bn—2 Ap—1 bn—l
0 bnfl an

Determinamos os autovalores e autovetores de J e os denotamos por

x] P11 P21 - DPnl
x5 P12 P22 - DPn2
*
X = . e P = R
SU: Pin P2n *°° DPnn

respectivamente.

Modificamos a notacgéo usual para representar os elementos de uma matriz. Assim, verificamos que na
matriz P, o primeiro indice do elemento p;; refere-se ao indice do i-ésimo autovetor e o segundo indice ao
j-ésimo elemento desse autovetor. Por isso, a notagdo nao usual dos indices nessa matriz. Portanto, cada
coluna de P, corresponde a um dos n autovetores associados a cada um dos autovalores z; ordenados em
ordem decrescente.

Em seguida, podemos obter os nds (pontos), tomando simplesmente os autovalores em ordem crescente,
ou seja, o vetor dos nés x, com componentes x;, é definido por

x=| =17 (6.20)

104 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

em que z; é o i-ésimo autovalor da matriz tridiagonal J.

Podemos constatar que os nés sao os autovalores dessa matriz apresentados em ordem reversa, ou seja,
em ordem crescente ao invés da habitual forma de apresenta-los, que é a ordem decrescente. Finalmente,
podemos obter os pesos como sendo uma func¢ao de gy e dos primeiros elementos de cada autovetor de
J, também considerado em ordem reversa, considerando as ordenagoes cldssicas do maior para o menor
autovalor. Essa func@o busca realizar uma normalizag¢ao adequada para garantir a validade da quadratura.

Assim, temos que os pesos das quadraturas sao obtidos por

[wy] [p?m
w2 pi—m
w3 pi—2,1
w= . =po | . , (6.21)
Wn—1 p%,l
L Wn] L p%,1 J

sendo p;; o j-ésimo elemento do i-autovetor de J correspondente ao i-autovalor zj.

Podemos observar que os valores w;’s dependem de p;; em ordem reversa de importancia, sendo essa
ordem determinada pelos autovalores de J.

Com os pesos, nos e funcgdes pesos, quando ela ndo for a unidade, podemos aplicar os métodos de
quadraturas apresentados anteriormente. Nosso proximo passo é implementar funcoes para obter os pesos
e os nos e exemplificarmos.

Funcdo para obter nés e pesos
da quadratura Gauss-Legendre
import numpy as np
import scipy as sp
def gausslegendquad(n):
n = int(n)
if n < O:
print ('E necessdrio um nimero nio negativo de nés'')
return
if n ==
return {'xi':[],
i = np.arange(1l, n)
mul0 = 2
b =i / np.sqrt(4 * i**2
J = np.zeros((n*n))
J(m + 1) % (i-1) + 1] = b
Jn+1) *1i-1] =D
J = J.reshape(n, n)
va, ve = sp.linalg.eigh(J)
w = velO,:]
w = mul * wk*x2
return {'xi': va,

wi': [}

)

'wi': w}

funcdo genérica para obter a

quadratura no [-1,1]

def quadgl(func, n = 8):
gl = gausslegendquad(n)
res = np.sum(gl['wi'] * func(gl['xi']))
return res

6.4. QUADRATURAS GAUSSIANAS 105

exemplo: f(x) = exp(2x)
int_{-1}"{1} f(x) dx - vetorizada
def e2x(x):

return np.exp(2*x)

funcdo polinomial
def p3(x):
return x**3-0.4*x**2+2,3*x+5
Exemplos
n=4
gausslegendquad(n)
n =238
print('e”(2x): ',quadgl(e2x, n))
print('Valor exato: ',(e2x(1)-e2x(-1))/2)
print('p3: ',quadgl(p3, 2))
print('Valor exato wolfram: ',9.73333)

{'xi': array([-0.86113631, -0.33998104, 0.33998104, 0.86113631]),
'wi': array([0.34785485, 0.65214515, 0.65214515, 0.34785485])}

e”(2x): 3.626860407846865
Valor exato: 3.626860407847019
p3: 9.73333333333333

Valor exato wolfram: 9.73333

No exemplo anterior, usamos a fungdo sp.linalg.eigh() do scipy.linalg, pois a funcdo
np.linalg.eig() ndo retorna os autovalores necessariamente em ordem. A funcdo eigh, por
sua vez, retorna os autovalores ordenados, mas em ordem crescente de valores e nao na ordem decrescente,
como ¢ feito em muitos outros programas. Podemos aplicar na normal as quadraturas, para ilustrarmos
0s casos em que os limites ndo sdo —1 e 1, incluindo os exemplos anteriores.

import math

import scipy as sp

funcdo genérica para trocar os

limites de integragdo de -1 a 1

para a e b (finitos)

def hx(func, x, a = -1, b = 1):
aux = (b - a) / 2
h = aux * func(aux * x + (a + b) / 2)
return h

modificagdo da quadGL para contemplar
outros limites que n&o sejam o -1 e 1
def quadglab(func, n =8, a = -1, b = 1):

gl = gausslegendquad(n)

h = hx(func, gl['xi'], a, b)

res = np.sum(gl['wi'] * h)

return res

X ~ N(mu, sig)
def pnormal(x, mu = 0, sigma = 1, n = 16):
if math.isclose(x, mu):
return 0.5

106 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

else:

if math.isclose(mu, 0) and math.isclose(sigma, 1):

z =X
else:
z = (x - mu) / sigma
res = quadglab(sp.stats.norm.pdf, n, 0, abs(z))
if (x < mu):
res = 0.5 - res
else:
res += 0.5
return res

integrar e2x de 1 até 3

a =1

b =3

quadglab(e2x, 8, a, b)

print('Valor exato: ', (e2x(b)-e2x(a))/2)
quadglab(p3, 2, a, b) # valor exato 35,73333
x = 1.96

pnormal (x)

print('Valor exato: ',sp.stats.norm.cdf(x))

np.float64(198.01986869689384)
Valor exato: 198.01986869690222
np.float64(35.73333333333333)
np.float64(0.9750021048517794)
Valor exato: 0.9750021048517795

Nas quadraturas anteriores, podemos substituir nossa fungao que calcula os nés e os pesos, por outra, que
utiliza um método de obtencao de autovalores e autovetores mais eficiente. Esse método é aplicavel a
matrizes simétricas tridiagonais. O script a seguir apresenta essa implementagdo. Precisamos apenas
fornecer um vetor com a diagonal da matriz e outro com os elementos das duas diagonais secundarias, que
sdo idénticos. A funcdo utilizada foi a sp.linalg.eigh_tridiagonal () da biblioteca scipy.

Funcdo para obter ndés e pesos
da quadratura Gauss-Legendre
Essa vers8o dispensa a criacgédo
da matriz J, por aplicar um
processo de obtencdo de
autovalores e autovetores em
matrizes tridiagonais - + répido
import numpy as np

import scipy as sp

def gausslegendquad2(n):

n = int(n)

if n < O:

H OH OH OH H H

print ('E necessario um nimero nio negativo de nés!')

return
if n ==

return {'xi':[], 'wi': [1}
i = np.arange(1, n + 1)

6.5. NEWTON-RAPHSON 107

il = np.delete(i,n - 1)

mu0 = 2

b =il / np.sqrt(4 * il**x2 - 1)

a = np.zeros(n)

va, ve = sp.linalg.eigh_tridiagonal(a, b)
w = velO0,:]

w = mul * wk*x2

return {'xi': va, 'wi': w}
n=4
gausslegendquad2(n)

{'xi': array([-0.86113631, -0.33998104, 0.33998104, 0.86113631]),
wi': array([0.34785485, 0.65214515, 0.65214515, 0.34785485])}

6.5 Newton-Raphson

Vamos apresentar o método numérico de Newton-Raphson para obtermos a solu¢ao da equagao

2z =0"1(p),

em que 0 < p < 1 é o valor da funcio de distribuicio da normal padrdo, ®~!(p) é a fungdo inversa da
funcao de distribuicdo normal padrao no ponto p e z o quantil correspondente, que queremos encontrar
dado um valor de p. Podemos apresentar esse problema por meio da seguinte equagao

em que P(z) é a fungdo de distribui¢do normal padréo avaliada em z. Assim, nosso objetivo é encontrar
os zeros da fungdo f(z) = ®(z) — p. Em geral, podemos resolver essa equagdo numericamente utilizando o
método de Newton-Raphson, que é um processo iterativo. Assim, devemos ter um valor inicial para o
quantil para iniciarmos o processo e no (n + 1)-ésimo passo do processo iterativo podemos atualizar o
valor do quantil por

1 (zn) (6.22)

T PG
n

em que f/(z,) é derivada de primeira ordem da fungéo para a qual queremos obter as rafzes avaliada no
ponto z,. Para esse caso particular temos que

[®(2n) — Pl

Zn+l = Zn — Wa (6.23)

sendo ¢(z,) a fun¢io densidade normal padrao. Como valores iniciais usaremos uma aproximagao grosseira,
pois nosso objetivo é somente demonstrar o método. Assim, se p for inferior a 0,5 utilizaremos zg = —0,1,
se p > 0,5, utilizaremos zg = 0,1. Obviamente se p = 0, a fun¢do deve retornar z = 0. A funcdo ¢Phi a
seguir retorna os quantis da normal, dados os valores de p entre 0 e 1, da média real p e da varidncia
real positiva 02, utilizando para isso o método de Newton-Raphson e a funcio phnorm de Hasting para
obtermos o valor da fun¢ao de distribuicao normal padrao.

108 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

funcdo auxiliar para retornar o valor da
funcdo densidade normal padréo
def phi(z):
return (1 / (2 * math.pi)**0.5 * np.exp(-z * z / 2))

Método de Newton-Raphson para obtermos quantis
da distribuigdo normal com média real mu e desvio
padrdo real positivo sig, dado O < p < 1
utiliza as fungdes phi(z) e phnorm(z),
apresentadas anteriormente
def gphi(p, mu = 0, sig = 1, func = phnorm):
eps = le-11
if p <=0 or p >= 1:
print('Valor de p deve estar entre 0 e 1!')
return
if sig <= 0:
print('Desvio padrdo deve ser maior que O!')

return
if abs(p - 0.5) <= eps:
zl1 =0
else:
if p < 0.5:
z0 = -0.1
else:
z0 = 0.1
it = 1

itmax = 2000

convergiu = False

while convergiu == False:
z1 = z0 - (func(z0) - p) / phi(z0)
if abs(z0 - zl1) <= eps * abs(z0) or it > itmax:

convergiu = True
it = it + 1
z0 = z1
return {'x': z1 * sig + mu, 'iter': it - 1}

Exemplo

p = 0.975

mu = 0

sig = 1

print('q normal Hasting: ',qphi(p, mu, sig, phnorm))

print('q normal Gauss-Legendre: ',qphi(p, mu, sig, pnormal))
print('Valor exato: ',sps.norm.ppf(p, mu, sig)) #para fins de comparagdo

q normal Hasting: {'x': np.float64(1.9599629237446643), 'iter': 8}
q normal Gauss-Legendre: {'x': np.float64(1.9599639845400563), 'iter': 8}
Valor exato: 1.959963984540054

Poderiamos, ainda, ter utilizado o método da secante, uma vez que ele nao necessita da derivada de
primeira ordem, mas precisa de dois valores iniciais para iniciar o processo e tem convergéncia mais lenta.
O leitor é incentivado a consultar Press et al. [1992] para obter mais detalhes. Também poderia ter sido
usada a fun¢do pnorm, que utiliza o método trapezoidal. Nesse caso a precisdo seria maior, mas o tempo

6.6. FUNCOES PRE-EXISTENTES NO PYTHON 109

de processamento também é maior. Para isso bastaria usar na chamada como valor do argumento func
a fun¢do pnorm. Também seria possivel chamar mcpnorm ou pmcnorm ou qualquer outra implementagao
eficiente que tivermos para a quadratura.

Felizmente o Python também possui rotinas pré-programadas para este e para muitos outros modelos prob-
abilisticos, que nos alivia da necessidade de programar rotinas para obtencdo das fungoes de distribuicoes
e inversas das fungoes de distribui¢oes dos mais variados modelos probabilisticos existentes.

6.6 Funcoes Pré-Existentes no Python

Na Tabela Table 3.1 apresentamos uma boa parte das rotinas para gerarmos dados dos mais variados
modelos probabilisticos contemplados pelo Python. Logo apés a tabela mencionada, apresentamos os
procedimentos Python da biblioteca scipy.stats para obtermos a fungao de probabilidade ou densidade, a
funcao de distribuigdo e a fungdo quantil. Devemos consultar os recursos desta biblioteca para conhecermos
os mais diferentes métodos associados a cada um dos seus objetos.

6.7 Exercicios

1. Comparar a precisao dos trés algoritmos de obtencao da fungdo de distribuigdo normal apresentados
neste capitulo. Utilizar a fun¢ao normal.cdf () como referéncia.

2. Utilizar diferentes nimeros de simulagées Monte Carlo para integrar a funcao de distribuicdo normal
e estimar o erro de Monte Carlo relativo e absoluto maximo cometidos em 30 repeti¢oes para cada
tamanho. Utilize os quantis 1,00, 1,645 e 1,96 e a funcdo normal.cdf () como referéncia.

3. A distribuicdo Cauchy é um caso particular da ¢ de Student com v = 1 grau de liberdade. A
densidade Cauchy é dada por:

1
f(x):m

Utilizar o método trapezoidal estendido para implementar a obten¢ao dos valores da distribuigao
Cauchy. Podemos obter analiticamente também a fungdo de distribuicao e sua inversa. Obter tais
fungbes e implementé-las no Python. Utilize as fungoes scipy.stats pré-existentes para checar os
resultados obtidos.

4. Utilizar o método Monte Carlo descrito nesse capitulo, para obter valores da funcao de distribuicao
Cauchy, apresentada no exercicio proposto 3. Utilizar alguns valores numéricos para ilustrar e
comparar com fung¢oes implementadas em Python para esse caso. Qual deve ser o nimero minimo
de simulagoes Monte Carlo requeridas para se ter uma precisao razoavel.

110 CHAPTER 6. APROXIMACAO DE DISTRIBUICOES

Chapter 7

Conjuntos e Elementos de Analise
Combinatéria em Python

Neste capitulo, pretendemos apresentar os conceitos bésicos de andlise combinatéria e de conjuntos,
de uma forma bastante simples. Vamos fazer algumas fungoes simples para cdlculo de probabilidades
computacionalmente em alguns casos particulares. Vimos no capitulo 1 os objetos conjuntos (set) do
Python. O operador set () é usado para criar um conjunto. O argumento da funcao set() é uma lista ou
uma tupla. Sdo imutdveis, ndo ordenados e nao possuem elemento duplicados.

Vérias funcgoes podem ser usadas para este tipo de objeto em Python, como pertencimento (in), unido
(union ou |), intersegdo (intersection ou &) e diferenga simétrica (symmetric_difference ou), como
foi ilustrado no capitulo 1. Também é possivel obter diferencas, tipo A-B entre dois conjuntos A e B.

A anélise combinatoéria nos permite resolver intimeros problemas de probabilidade. Problemas que ocorrem
normalmente sao listados a seguir:

a. selecionar entre n elementos x deles, 0 < x < n, sem repetir nenhum elemento (amostragem sem
reposicao) onde a ordem nao importa: combinagao;

b. selecionar entre n elementos x deles, 0 < x < n, podendo repetir os elementos selecionados
(amostragem sem reposi¢do) onde a ordem importa: arranjos;

c. distribuir n elementos em x, x = n, posi¢des de formas diferentes: permutacoes;

d. caminhos diferentes possiveis de se percorrer com n; possibilidades na primeira etapa, ny possibili-
dades na segunda etapa e assim sucessivamente até ny possibilidades na k-ésima etapa: contagem.

Assim, queremos obter todas as possiveis combinagdes, permutagdes, arranjos ou caminhos (contagens)
possiveis na resolucao de algum problema de probabilidade ou de outra situagdo em geral.

7.1 Introducao a Analise Combinatéria no Python

A andlise combinatéria e os métodos de contagem sao essenciais para se entender probabilidade. No
Python podemos computar o niimero de combinagdes dado por

n n!
. :m, para 0 < x < n,

por math.comb(n, x). Ja a listagem das combinagoes de n tomados = a x é obtida pelo comando
combinations(range(1,n+1), x) do pacote itertools que deve ser importado. O primeiro argumento
da func¢do combinations é uma lista, que no caso foi de uma lista indo de 1 a n, em que usamos a funcao

111

112 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON

range para obter essa lista. Podemos, em vez disso, usar qualquer outra lista. Podemos usar ainda a
fun¢do comb do scipy.special para obtermos o niimero de combinagbes de forma alternativa.

O comando combinations(n, x) do pacote itertools retorna um objeto que deve ser convertido para
uma lista com (Z) elementos, em que cada elemento da lista corresponde a uma tupla de z elementos (a
combinagao).

O script a seguir ilustra um caso particular destes comandos:

from itertools import combinations

from scipy import special as sps

import math

n=4

x =2

math.comb(n, x)

sps.comb(n, x) # resultado é um float
comb = list(combinations(range(l,n+1), x))
print (comb)

listando a combinagdo O da lista

print (comb[0])

len(comb) # nimero de combinagdes alternativo
retorna uma combinagdo de letras
list(combinations(['a','b",'c'], 2))

6
np.float64(6.0)

(a, 2, 1, 3, @, 49, (@2, 3), (2, 9, G, 4]
1, 2)

6

[(Ial’ Ibl)’ (lal, ICI), ('b', 'C')]

7.2 Permutacoes e Arranjos

O namero total de permutagoes de n objetos é dado por n! e com o uso do pacote itertools, podemos
listé-las em uma lista de tamanho n! com cada elemento sendo uma tupla de tamanho n, com a funcéo
permutations();

Também podemos tomar os arranjos de n tomados x a x, com 0 mesmo comando, cujo nimero de arranjos
é dado por

n!
Anm =

)

(n—z)!’
sendo que no Python esse valor é obtido por meio da fun¢ao math.perm(n, x).

O script a seguir ilustra estes comandos:

Obter todas as permutagdes de n
em n posigdes - permutacgdo

ou em x posigbes x<n, arranjo
from itertools import permutations
import math

n=3

permutacgdes

7.2. PERMUTACOES E ARRANJOS 113

perm = list(permutations(range(1,n+1)))
print (perm)
arranjos
x=2#x<n
math.perm(n, x)
arran = list(permutations(range(l,n+1), x))
print (arran)
Imprime as permutagdes
for i in list(perm):
print (i)
type (perm[0])

[, 2, 3, 1, 3,2, (2,1, 3, (2,3, 1, 3,1, 2), 3, 2, 1]
6
[(1) 2)’ (1’ 3), (2, 1)) (2) 3)’ (3’ 1), (3, 2)]

(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
3, 1, 2)
(3, 2, 1)
tuple

Para sortearmos permutagoes ou arranjos de forma aleatéria, o comando random. sample (range (1,n+1) ,n)
retorna uma permutacdo de n tomados n a m. Se quisermos um sorteio de n tomados x a x
random. sample (range(1,n+1),x), ou seja, um arranjo de um resultado com z elementos sem repeticao
(amostra sem reposigdo). N&o é referente ao caso em questdo (permutagdes e arranjos), mas se
desejarmos amostragens com reposi¢do, como requerido nos métodos bootstrap, usamos a funcao
random. choices(range(1,n+1),x), em que z é um valor entre 1 e n. Ambos os comando requerem que
importemos a biblioteca random do Python. O script a seguir ilustra estes comandos:

Obter amostras aleatérias de

permutacgdes ou arranjos

(sem reposig&o), ou amostras com

reposicgdo

import random

n=>5

amostras de permutacdes

amostra = random.sample(range(1l,n+1), n)
print (amostra)

x=3#x<n

amostras de arranjos

amostra = random.sample(range(1,n+1), x)
print (amostra)

amostras com reposigdo

x= 3

amos = random.choices(range(1,n+1), k=x)
print (amos)

3, 2, 4, 1, 5]
4, 3, 2]
5, 5, 2]

114 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON

7.3 Contagem

O principio fundamental da contagem, conhecido por principio multiplicativo, é utilizado para encontrar
o ntmero de possibilidades para um evento constituido de k etapas. As etapas devem ser sucessivas e
independentes. Se um evento tem duas (k = 2) etapas, sendo que a primeira possui n; possibilidades e a
segunda, ne possibilidades, entao existem nq X no possibilidades.

Assim, o principio fundamental da contagem é a multiplicagdo das opcoes de cada etapa para determinar
o total de possibilidades. Esse conceito é importante para a andlise combinatéria, drea da matemética que
reune os métodos para resolugdo de problemas incluindo a contagem entre eles e, por isso, é muito ttil na
investigacdo para determinar a probabilidade de fend6menos naturais.

Para obtermos todas as possibilidades em k etapas, cada uma com a mesma quantidade n de possibilidades
criamos uma classe Python com algumas fungoes. A funcdo contag(n, k) retorna todas as contagens
a partir de n possibilidades em k etapas, como, por exemplo, com n = 2 sexos de animais em k = 3
nascimentos, ou n = 2 portas de um prédio em k = 2 possibilidades, correspondentes as entradas e as
saidas do prédio. Também fizemos o mesmo quando temos uma lista (iterador qualquer) de tamanho &
correspondendo as k etapas em que cada elemento refere-se ao nimero de possibilidades daquela etapa.

A pergunta, do segundo exemplo, de quais maneiras diferentes uma pessoa pode entrar e sair do edificio
com 2 entradas e duas saidas é o que pretendemos listar (enumerar). A funcdo proposta usa um processo
recursivo, em que em cada chamada é atualizada a contagem em particular. A recursividade ocorre na
fun¢do permuta ou permutav, para o caso de uma lista de etapas.

Classe para obter as contagens de x
possibilidades em cada k etapas: x, k vezes
ou x = [n1,n2,...,nk](lista com k néds).
Usa overload e ilustra a criagéo
de uma classe Python
from multipledispatch import dispatch
import numpy as np
class Cont:
def permuta(self,z, pos, permn, n, k, prim):
if prim:
z = np.full(k + 1, 1)
prim = False
permun = np.append(permn, [z[1:(k+1)]],axis=0)
else:
permun = permn
if z[pos] < n:
z[pos] = z[pos] + 1
permun = np.append(permun, [z[1: (k+1)]],axis=0)
else:
nachei = True
if pos ==
i=pos -1
paratras = True
else:
i=pos +1
paratras = False
while nachei and i >= 1 and i <= k:
if z[i] < n:
z[i] = z[i] + 1
if paratras:

7.3. CONTAGEM 115

z[(i+1): (k+1)] =1
permun = np.append(permun, [z[1: (k+1)]],axis=0)

pos =k
nachei = False
else:
if (pos == k):
i=1i-1
else:
i=1i+1

if np.sum(z[1:(k+1)]) == n * k:
return permun
else:
return self.permuta(z, pos, permun, n, k, prim)
def permutav(self,z, pos, permn, x, k, prim):
if prim:
k = len(x)
pos =k
z = np.full(k + 1, 1)
prim = False
permun = np.append(permn, [z[1:(k+1)]],axis=0)
else:
permun = permn
if z[pos] < x[pos-1]:

z[pos] = z[pos] + 1
permun = np.append(permun, [z[1: (k+1)]],axis=0)
else:
nachei = True
if pos ==
i=pos -1
paratras = True
else:

i =pos +1
paratras = False
while nachei and i >= 1 and i <= k:
if z[i] < x[i-1]:
z[i] = z[i] + 1
if paratras:
z[(i+1): (k+1)] = 1
permun = np.append(permun, [z[1:(k+1)]],axis=0)

pos =k
nachei = False
else:
if pos == k:
i=41i-1
else:
i=1i+1

if np.sum(z[1:(k+1)]) == sum(x):
return permun
else:
return self.permutav(z, pos, permun, x, k, prim)
@dispatch(int, int)

116 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON

def contag(self, x, k):
prim = True
permn = np.empty((0, k), int)
z = np.array([])
pos = k
n=x
res = self.permuta(z, pos, permn, n, k, prim)
return res

@dispatch(list)

def contag(self, x):
k = len(x)
pos = k
prim = True
permn = np.empty((0, k), int)
z = np.array([])
res = self.permutav(z, pos, permn, x, k, prim)
return res

Exemplo de uso

res = Cont()

k=3

x =3

val = res.contag(x, k)

print(val)
x = [3, 4, 2]
res.contag(x)

[[1 1 1]
[11 2]
[11 3]
[1 2 1]
[1 2 2]
[1 2 3]
[1 3 1]
[1 3 2]
[1 3 3]
[2 1 1]
[2 1 2]
[2 1 3]
[2 2 1]
[2 2 2]
[2 2 3]
[2 3 1]
[2 3 2]
[2 3 3]
[3 1 1]
[3 1 2]
[3 1 3]
[3 2 1]
[3 2 2]
[3 2 3]
[3 3 1]
[3 3 2]

7.3. CONTAGEM 117

[3 3 311

array([[1, 1, 1],
[1, 1, 21,
[1, 2, 11,
[1, 2, 2],
[1, 3, 11,
[1, 3, 271,
[1, 4, 11,
[1, 4, 2],
[2, 1, 1],
[2, 1, 2],
[2, 2, 11,
[2, 2, 2],
[2, 3, 11,
[2, 3, 2],
[2, 4, 1],
[2, 4, 2],
[3, 1, 11,
[3, 1, 21,
[3, 2, 11,
[3, 2, 21,
(3, 3, 11,
[3, 3, 21,
[3, 4, 11,
[3, 4, 211)

No exemplo anterior tivemos varias novidades. Criamos uma classe pela primeira vez. Nesta classe
implementamos quatro fungoes. Entre elas, as duas com a funcdo de realizar as listagens de todas
as contagens foram implementadas com chamadas recursivas. As outras duas, foram duas versoes
de uma mesma funcdo com diferentes argumentos, a funcdo contag. Para isso usamos a técnica de
overloading. Assim, usamos o pacote multipledispatch de onde importamos from multipledispatch
import dispatch. O comando @dispatch(int, int) ou @dispatch(list) antes da defini¢do da fungao
contag indica que ela tem diferentes argumentos. A primeira defini¢io possui dois argumentos inteiros e
a segunda, um argumento, correspondente a uma lista. Para exemplificar, criamos um objeto da classe
Cont, objeto res, por meio do qual chamamos o método contag duas vezes com argumentos diferentes, o
que faz com que ao ser executado, o interpretador escolha a opcao apropriada.

Se, por exemplo, quiséssemos obter todas as possibilidades de nascimento quanto ao sexo de familias de
até 4 filhos, terfamos o seguinte espaco amostral de nosso experimento com 2* = 16 elementos:

Espaco amostral dos filhos

quanto ao sexo

#comn=4e 0<=x<=n
filhos = Cont()

n=4

res = filhos.contag(2, n) - 1
sexo = ['F','M']

type (res[0])

print (np.array(sexo) [res])

numpy .ndarray

[['F' 'F' 'R va]
[lFl IFI |F| 'M']

118 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON

['F' 'F' 'M' 'F']
['F' 'F' 'M' 'M']
['F' 'M' 'F' 'F']
[IFI 'M' 'F! IMI]
['F' 'M' 'M' 'F']
['F' 'M' ‘M M)
['M' 'F' 'F' 'F']
['M' 'F' 'F' 'M']
[IM! 'FYO'M! IFI]
[IMI 'FYO'M! IMI]
['M' 'M' 'F' 'F']
['M' 'M' 'F' 'M']
['M' 'M' 'M' 'F']
[IM! ™' 'M! IMI]]

O Python ji tem implementado esses recursos para realizar contagens. A biblioteca itertools possui a
fun¢do product que faz o mesmo papel de nossas fungoes implementadas na classe cont.

import itertools
11 = ['F','M']
list(itertools.product(ll, repeat=4))
n=3
12 = list(range(l, n+1))
list(itertools.product (12, repeat=3))
x = [3, 4, 2]
d3 = {}
for i in range(len(x)):

d3[i]= list(range(1, x[i]+1))
13 = 1list(d3.values())
result = itertools.product(*13)
print (list(result))

[C'F', 'F', 'F', 'F'),
('F', 'F', 'F', 'M"),
('F', 'F', 'M', 'F'),
('F', 'F', 'M', 'M"),
(IFI’ IMI’ IFI’ IFI)’
(‘F', 'M', 'F', 'M"),
('F', 'M', 'M', 'F"),
C'F', 'M', 'M', 'M"),
('M', 'F', 'F', 'F'),
(IMl’ IFI’ IFI, IMI)’
(IMI’ IFI’ IMI’ IFI),
('M', 'F', 'M', 'M"),
('M', 'M', 'F', 'F"),
('M', 'M', 'F', 'M"),
(IMl’ 'M', IMI’ IFI)’
(IMI’ IMI’ IMI’ IMI)]

(1, 1, 1,
1, 1, 2),
1, 1, 3),
(1, 2, 1,
1, 2, 2),

7.4. CONJUNTOS EM PYTHON 119

1, 2, 3),
1, 3, 1),
(1, 3, 2),
1, 3, 3),
(2, 1, 1),
(2, 1, 2),
(2, 1, 3),
(2, 2, 1),
2, 2, 2),
2, 2, 3,
2, 3, 1,
(2, 3, 2),
(2, 3, 3),
3, 1, 1),
3,1, 2),
3, 1, 3,
3, 2, 1),
3, 2, 2),
@3, 2, 3),
@3, 3, 1),
3, 3, 2),
3, 3, 3)1]
[, 1, 1, 1,1, 2, 1, 2, O, 1, 2, 2), 1, 3, D, 1, 3, 2), 1, 4, 1), (1, 4, 2),

7.4 Conjuntos em Python

Vamos relembrar as principais fungoes dos objetos set, conjuntos em Python, para podermos realizar
algumas operagoes simples. Os conjuntos no Python é uma coletanea de elementos sem a ocorréncia de
valores com multiplicidades. Os conjuntos sao criados pelo método set ou pelo uso de chaves. Portanto,
x = set([1,2,3]) ou x={1,2,3} é um conjunto, mas y= [1,2,3,3] ndo é, por ter elementos repetidos.
Se considerassemos o comando y= set([1,2,3,3]), este objeto seria um conjunto, pois o Python elimina
automaticamente os elementos repetidos na criacao do conjunto.

Os argumentos da funcdo set sdo as listas ou as tuplas. Podemos de forma eficiente usar os conjuntos
para remover elementos duplicados de uma lista ou tupla. Primeiro, aplicamos o operadorset () com
o argumento sendo uma lista ou uma tupla e aplicamos o argumento list () ou tupla() no resultado.
Outra vantagem dos conjuntos é que eles podem ter elementos de diferentes tipos. Os conjuntos sao
imutaveis, pois seus elementos nao podem ser trocados, mas podemos adicionar e remover elementos de
um conjunto em Python. Além do mais, os conjuntos sdo niao ordenados. Vejamos um exemplo de como
criar um conjunto.

Criar conjuntos em Python

= {'Laranja', 'Magd', 'Pera'}
= set(('Laranja'))

= set(('Laranja',))
set((1,2,3,'Frutas'))

OQwWwr>=0qw>= H#
]

{'Laranja', 'Mag&d', 'Pera'}

(2’ 1’ 1)’

(

120 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON

{ILl’ Ial’ Ijl, Inl’ Irl}
{'Laranja'}
{1, 2, 3, 'Frutas'}

Podemos adicionar ou remover elementos em um conjunto. Os elementos que sdo argumentos das fungoes
set.add() ou set.update() devem ser imutaveis como as tuplas ou as strings para o primeiro método e
qualquer objeto iterador como as listas, para o segundo. Se o argumento for uma lista, ocorrerd um erro no
método add. Para remover um elemento de um conjunto, podemos usar métodos como o set.remove ()
ou set.discard() ou set.pop(). O primeiro comando remove um elemento especifico do conjunto e
retorna um erro, se o elemento nao existir. O segundo remove o elemento, mas ndo acusa erro se o
elemento nao existir, deixando o conjunto como estava anteriormente a sua aplicagdo. O terceiro remove
um elemento de forma aleatéria do conjunto e ndo tem argumento. O método pop retorna o elemento
removido e atualiza (modifica) o conjunto no qual foi aplicado. Os métodos add e update diferem no
sentido do primeiro ndo suportar acrescentar uma lista ao conjunto. O método set.clear() remove
todos os elementos do conjunto. Veja o script com alguns exemplos:

adigdo e remogdo de elementos
de um conjunto

x = {1,2,3,4}

y = [4,5,6,7]

x.update (y)

X

x.add(8)

X

x.remove (8)

X

x.discard(9) # n8o causa erro por ndo existir em x
X

x.pop()

X

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5,6, 7, 8

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7}

1

{2, 3, 4, 5, 6, T}
O Python inclui algumas operagdes com conjuntos, sendo algumas delas:

e set.union(x, y): unido dos conjuntos x e y, que corresponde ao conjunto de todos os elementos
presentes em x e em y, considerando apenas uma vez aqueles elementos com multiplicidade maior
que 1;

e set.intersect(x,y): intersecdo dos conjuntos x e y, que corresponde ao conjunto dos elementos
presentes simultaneamente em x e y;

e set.difference(x,y): conjunto da diferenca entre os conjuntos z e y, consistindo no conjunto de
todos os elementos de x que nao estdo em y;

e x == youx != y: testa se dois conjuntos x e y sdo iguais ou se sdo diferentes, respectivamente;

e c in y: pertencimento, ou seja, testa se ¢ ¢ um elemento do conjunto y;

7.4. CONJUNTOS EM PYTHON 121

e set.symmetric_difference(x, y): é o conjunto dos elementos que estdo ou em x ou em y, mas
nao estd em ambos simultaneamente.

operagdes com conjuntos
ilustrativas

y = set([1,2,3,3])

X {3,4,5}
set.union(x,y)

x.union(y)

x # ndo modifica x
set.intersection(x,y)
set.difference(x,y)

XIS

x =y

t = tuple(set((1,2,3,3))) # removendo duplicados de uma tupla
t

type (t)

y = set([1,2,3])

x = {3,4,5}

set.symmetric_difference(y,x)

{1, 2, 3, 4, 5}
{1, 2, 3, 4, 5}
{3, 4, 5}

{3}

{4, 5}

False

True

(1, 2, 3

tuple

{1, 2, 4, 5}
Outras opgoes de operagdes basicas com conjuntos sdo as seguintes:

e y.issubset(x): retorna True se y estd contido ou ¢ igual ao conjunto z;

e x.issuperset(y): retorna True se x contém ou é igual ao conjunto y;

e x.isdisjoint(y): retorna True se x e y ndo tiverem elementos comuns, ou seja, se a interse¢ao for
um conjunto vazio.

outras operagdes com conjuntos
= {1,2,3,4,5}

= {1, 3, 5%}

y estd contido em x
.issubset (x)

X contém y

.issuperset (y)

se X e y sdo disjuntos
.isdisjoint (y)

M oH M HFEYS <9 X O

True

122 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON
True

False

7.5 Alguns Problemas de Probabilidade

Vamos apresentar alguns casos particulares como o caso das coincidéncias de aniversirios. Para a
coincidéncia de aniversarios, vamos considerar a coincidéncia de nascimento de um grupo de n pessoas
na mesma data e que o ano tem 365 dias. Consideramos também que a distribuigdo dos nascimentos ao
longo dos anos dos aniversarios é aleatéria uniforme, o que é uma forte suposicdo. A probabilidade de que
nenhuma pessoa tenha a mesma data de nascimento (evento A) em um grupo de n pessoas é:

 Agesim 365!

© 365" (365 —n)!365n

P(A)

Desejamos a probabilidade do evento complementar, que é dada por P(A¢) =1 — P(A). Logo,

Asesn 365!

P(A%) =1 =1 -
(4% 365" (365 — n)1365"

que é a probabilidade de haver pelo menos uma coincidéncia de aniversarios na mesma data.

Implementamos duas formas. Na primeira usamos a férmula completa. Tomamos o logaritmo (usamos a
fun¢do gammaln da scipy.special) e ao final recuperamos tomando o exp do resultado. Na segunda alter-
nativa usamos a biblioteca math, em que o total de arranjos Ases, ¢ obtido pelo comando math.perm(365,
n).

O programa da primeira alternativa em Python é:

import numpy as np
import matplotlib.pyplot as plt
from numpy.lib.scimath import log
from numpy import exp
from scipy.special import gammaln
Uso do log of gama para obter o log do fatorial
def ca(n):
invertendo o log (i.e. exp)
return 1 - exp(gammaln(365+1) - gammaln(365-n+1) -nxlog(365))

n = np.arange(l, 100+1)
Grafico

plt.plot(n, ca(n))
plt.show()

7.5. ALGUNS PROBLEMAS DE PROBABILIDADE 123

1.0 A

0.8

0.6

0.4 1

0.2

0.0 -

0 20 40 60 80 100

Nossa segunda implementacao é:

coincidéncia de aniversarios
probabilidades
import math
def pca(n):
if type(n) == int:
n = [n]
log365 = math.log(365)
pc = np.empty(0)
for k in range(len(n)):
pc=np.append (pc, 1-exp(math.log(math.perm(365, n[k]))-n[k]*1log365))
return pc
n = np.arange(l, 100+1)
Grafico
plt.plot(n, pca(n))
plt.show()

124 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON

1.0 A

0.8

0.6 1

0.4 1

0.2

0.0

T T T T T

0 20 40 60 80 100

No segundo exemplo, vamos considerar a probabilidade de que uma comissdo de tamanho m ao ser retirada
de um grupo de tamanho n aleatoriamente nao contenha representantes de um grupo existente especifico
de tamanho k entre os n elementos do grupo todo. Essa probabilidade é:

(")
(m)

O programa Python foi implementado e ilustramos com o exemplo dos senadores do Brasil, que possui
representantes das diferentes unidades federativas brasileiras. No Brasil temos n = 27 x 3 senadores, ou
seja, 81 senadores no total, sendo 3 de cada estado ou do Distrito Federal. Se vamos formar uma comissao
aleatéria de m = 10 senadores, qual é a probabilidade de que uma unidade federativa qualquer contendo
k = 3 senadores ndo seja representada. Vimos por meio da andlise da férmula anterior que temos (:1)
maneiras diferentes de sortear comissoes de tamanho m em n elementos do grupo todo. Se eliminarmos
do total n, os k que serdo excluidos da composicao da comissdo, sobram n — k que podem ser amostrados
m a m. Assim, o nimero de comissoes sem os k do grupo considerado é (”;Lk) A razdo entre estas
duas quantidades nos fornece a probabilidade desejada. O script com o exemplo dos senadores esta
apresentado a seguir.

P(Nao ser representado) =

Probabilidade de uma comissdo de m pessoas

ndo ter representante de um subgrupo de tamanho

k quando retirada uma comiss8o de tamanho m de

um grupo contendo n elementos, k < n e m <= n-k
from scipy import special as sps

def pnr(n , m, k):

pr = sps.comb(n-k, m) / sps.comb(n, m)

return pr

Exemplo

= 27x3 # numero de senadores no Brasil, 81 (3 em cada estado ou DF)
= 10 # comissdo de m deles

3 # um estado qualquer fixado ndo ser representado
por(n,m,k)

m = range(1l, 81+1)

plt.plot(m, pnr(n,m,k))

w B B %

7.5. ALGUNS PROBLEMAS DE PROBABILIDADE 125

plt.show()
probabilidade de MG e DF
ndo serem representados na comiss&o

k=6
m = 10
par(n,m,k)

np.float64(0.6698898265353962)

1.0 1

0.8 A

0.6

0.4

0.2

0.0

0 10 20 30 40 50 60 70 80

np.float64(0.44129815640475195)

Nosso préximo exemplo refere-se as probabilidades em uma méao de poquer, construindo as possibilidades
e probabilidades. Neste jogo podemos ter uma mao sem nada (sem pares, sem dois pares, sem trincas,
etc.), uma com um par, uma com dois pares, uma com uma trinca, uma com uma sequéncia (qualquer de
naipe), uma com flush (diferentes valores que nao estao em sequéncia do mesmo naipe), uma com um full
house (trinca e par), uma com o four (quadra), uma com uma sequéncia do mesmo naipe e uma sequéncia
real do mesmo naipe (royal flush - do 10 ao As).

O numero de possibilidades totais de distribuir 52 em um sorteio de 5 cartas (uma mao) é:

52 52!
(5) 51(52 — 5)! 598.960

e Para obtermos uma mao sem valor, temos que entender que o baralho é constituido de 52 cartas,
sendo 13 valores das cartas (As, 1, 2, .-+, 10, Valete, Dama e Rei) e 4 naipes para cada valor
(espadas, paus, ouros e copas). O nimero de possibilidades de uma mao de cinco cartas (sorteio de
5 cartas sem reposigao) conter uma mao sem valor, ouseja, sem pares, sem trincas, sem quadras,
sem sequéncias de naipes diferentes ou sem sequéncias do mesmo naipe é:

B RO R

ou seja, é o namero de cartas de diferentes valores com qualquer um dos 4 naipes (153)45, subtraido de
todas as possibilidades das sequéncias de naipes diferentes 10 x 4% e das possibilidades de ter cartas de

126 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON

. . 1 .o . ’ . A .
diferentes valores com o mesmo naipe 4(53). Este valor deve ser adicionado das dez possiveis sequéncias

para cada um dos naipes 4 x 10. Esta adi¢do se di4 em razao de termos retirado as possibilidades de de ter
cartas de diferentes valores com o mesmo naipe, que inclui as 10 sequéncias do mesmo naipe possiveis e
novamente foi retirada quando eliminamos as possibilidades de termos 5 cartas de valores diferentes com
0 mesmo naipe, que inclui as 10 sequéncias do mesmo naipe possiveis. Dal precisamos adiciona-las, uma
vez que elas foram retiradas duas vezes.

e Para a mao de um par simples temos:

13\ 74\ /12 e
1/\2/\3 ’
13\ L 4\ L Fheq 12y .
em que (1) escolhe o valor do par, (2) escolhe os naipes para o par, (3) escolhe entre os 12 valores

remanescentes (nio escolhido para o par) e 43, escolhe os naipes dos 3 valores diferentes do par.

e Para os dois pares temos:

13\ /4\ /12\ /4 /11 4
1 2 1 2 1)7
13 . . 4 . . . 12
em que (1) escolhe o valor do primeiro par, (2) escolhe os naipes para o primeiro par, (1) escolhe o
segundo par entre os 12 valores remanescentes, (3) escolhe os naipes para o segundo par e (111) escolhe os

valores entre os 11 valores remanescentes (ndo escolhido para os 2 pares) e 4, escolhe os naipes do valor
diferente dos dois pares.

e Para uma tripla temos:

13\ 74\ /12 2
1/\3/\ 2 ’
13} o ; 4 q L naineg ; 12y o . . .
em que (N) escolhe o valor da tripla, (3) escolhe os naipes para a tripla, (2) escolhe os 2 valores entre os

12 valores remanescentes, 42 escolhe os naipes para estes valores.

e Para a sequéncia:

10 x 45 — 10 x 4,

em que 10 escolhe entre as 10 possiveis sequéncias (do As ao 5, do 2 ao 6, até do 10 ao As) e o 45 escolhe
os naipes de cada valor. O resultado inclui as sequéncias do mesmo naipe, que devem ser retiradas, que
correspondem & 10 x 4 (sequéncias de mesmo naipe incluindo as reais).

o Para o flush (cartas do mesmo naipe):

13
4—-10x4
() xa-10x4
13

em que (5) escolhe os 5 diferentes valores entre os 13 e 4 escolhe um dos naipes para os 5 valores. O
resultado inclui as sequéncias do mesmo naipe, que devem ser retiradas, que correspondem a 10 x 4
(sequéncias de mesmo naipe incluindo as reais).

7.5. ALGUNS PROBLEMAS DE PROBABILIDADE 127

o Para o full house (trinca e par):

13\ /4\ [12\ /4
1/\3/\1/\2
13 : 4 : : 12
em que (1) escolhe o valor para a trinca, (3) escolhe os naipes da trinca, (1) escolhe o valor do para
entre os 12 valores remanescentes e (3) escolhe os naipes da dupla.

e Para a quadra (four):

(113> (112> 4
em que (1

. , . 12

1) escolhe o valor para a quadra que necessariamente terda uma de cada naipe, (n) escolhe um
valor para a carta remanescente dos 12 valores restantes e 4 escolhe um dos naipes da carta remanescente,
que nao é o da quadra.

o Para as sequéncias do mesmo naipe (straight flush):

10 x 4 — 4,

pois sdo 10 sequéncias para um dos 4 naipes, subtraida das 4 sequéncias reais entre elas, do 10 ao As de
cada um naipe entre os quatro naipes possiveis.

o A sequéncia real (royal straight flush): tem uma tnica sequéncia possivel do 10 ao As para cada um
dos quatro naipes, totalizando 4 possiveis sequéncias reais.

O programa a seguir cria um dataframe com todas essas contagens e calcula as probabilidades dividindo-as

pelo niimero total de combinagoes:

#Ma&o de pdéquer

probabilidades

import pandas as pd

import numpy as np

from scipy import special as sps

poker = {
'none': sps.comb(13,5)*4x*5 — 10*4**5 - 4*sps.comb(13,5) + 10%4,
'pair': 13*sps.comb(4,2)*sps.comb(12,3)*4**3,
'two.pairs': sps.comb(13,2)*sps.comb(4,2)**2*x11%4,
"triple': 13%*sps.comb(4,3)*sps.comb(12,2)*4*%*2,
'straight': 10%4xx5 - 10%4,
"flush': 4#*sps.comb(13,5) - 10%4,
'full .house': 13*sps.comb(4,3)*12xsps.comb(4,2),
"four': 13*sps.comb(4,4)*12x4,
'straight.flush': 10%4 - 4,
'royal.flush': 4 }

sum(poker.values()) - sps.comb(52,5) # conferir

poker

mdo = list(poker.keys())

possibilidades = list(poker.values())

128 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON

datapoker = pd.DataFrame({'m&o': mio, 'possibilidades': possibilidades})
datapoker['probabilidades'] = list(poker.values()) / sps.comb(52,5)
datapoker

sum(datapoker['probabilidades'])

np.float64(0.0)

{'none': np.float64(1302540.0),
'pair': np.float64(1098240.0),
'two.pairs': np.float64(123552.0),
'triple': np.float64(54912.0),
'straight': 10200,

'flush': np.float64(5108.0),
'full.house': np.float64(3744.0),
'four': np.float64(624.0),
'straight.flush': 36,
'royal.flush': 4}

mao possibilidades probabilidades
0 none 1302540.0 0.501177
1 pair 1098240.0 0.422569
2 two.pairs 123552.0 0.047539
3 triple 54912.0 0.021128
4 straight 10200.0 0.003925
5 flush 5108.0 0.001965
6 full.house 3744.0 0.001441
7 four 624.0 0.000240
8 straight.flush 36.0 0.000014
9 royal.flush 4.0 0.000002

1.0

Nosso préximo exemplo refere-se a probabilidade da maxima diferenga de uma lista enumerada ordenada.
Obter o maior gap (salto) (diferenga méxima) entre dois niimeros consecutivos no sorteio sem reposicao
de m numeros entre os n primeiros inteiros de 1 a n, para m < n. No Python, o comando np.diff (x),
retorna as diferencas entre niimeros consecutivos da lista x.

O programa a seguir, usa a fungdo checkgap para retornar a maxima diferenga de um interador qualquer.
A fungdo maxgap, recebe n, m e k e calcula as probabilidades de cada caso. Para isso ela percorre todas as
combinagoes geradas por combinations retornando o maximo de cada combinagdo obtida em y e com o
comando mean(y == k) é obtida a probabilidade exata de P(X = k), sendo X a varidvel que representa a
maior diferenca entre nimeros inteiros consecutivos de uma amostra sem reposicao de tamanho m obtida
entre n nimeros inteiros, para m de 1 a n e k o valor da méxima diferenga (valor da varidvel aleatéria)
para o qual queremos calcular a probabilidade de ocorréncia. Se m = 2, entdo a maxima diferenca sera
considerada a diferenga consecutiva, pois a diferenca em cada resultado do espaco amostral é tnica, em
razdo de termos amostras de tamanho 2.

Max gap probabilidades
from itertools import combinations
import pandas as pd
def checkgap(cmb) :
x = np.diff (cmb)
return max(x)

7.5. ALGUNS PROBLEMAS DE PROBABILIDADE 129

def maxgap(n, m, k):

if m <=1 or m > n:
print('m deve estar entre 1 e n!')
return

comb = list(combinations(range(1,n+1), m))

y = np.empty(0)

for cmb in comb:
y = np.append(y,checkgap(cmb))

return np.mean(y == k)

funcdo para todo o suporte
def maxgapsx(n, m):
if m <=1 orm > n:
print('m deve estar entre 1 e n!')
return
comb = list(combinations(range(1l,n+1), m))
y = np.empty(0)
for cmb in comb:
y = np.append(y,checkgap(cmb))
res = {'x':[],'PX=x)':[1}
for k in range(l,n-m+2):
res['P(X=x) '] .append(np.mean(y == k))
res['x'].append (k)
return pd.DataFrame(res)

exemplo de uso
n==6

m=3

k=2

maxgap (n,m, k)
maxgapsx (n,m)

np.float64(0.4)

x P(X=x)
0 1 02
1 2 04
2 3 03
3 4 01

Nosso ultimo exemplo é para a probabilidade das somas das faces no langamento de n dados e da diferenca
em valor absoluto das faces no lancamento de 2 dados. Para este caso, podemos usar uma versao similar,
ou aplicando a fun¢do contag anteriormente apresentada ou aplicando a funcao product da biblioteca
intertools. Optamos por usar a fun¢do contag da classe cont.

Com uso de alguns pequenos detalhes adicionais, obtivemos os resultados para os dois casos. O segundo
caso, da diferenca, por razoes ébvias, sdo resultantes do lancamento de apenas 2 dados. Nos dois casos
apresentamos também os resultados das probabilidades obtendo todas as possibilidades que corresponde
ao espago amostral do experimento aleatério. Temos uma fungdo para obter uma probabilidade para um
valor especifico da varidvel aleatoria e outra para todos os valores de probabilidade relativos ao suporte da

130 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON

variavel aleatéria, nos dois casos, o da soma de n dados e o da diferenga de dois dados. Os resultados
estao apresentados no script a seguir:

Probabilidades para o langamento de
n dados e obtengdo da soma e também
para a diferencga absoluta de 2 dados
somafaces: retorna P(X=x)
depende da class cont
def somafaces(n, x):
if x<n or x>6*n:
print('x deve estar entre n e 6n!')
return
res = Cont()
perm = res.contag(6, n)
y = np.empty(0)
for pmb in perm:
y = np.append(y,np.sum(pmb))
return np.mean(y == x)
def somafacessx(n):
if x<n or x>6*n:
print('x deve estar entre n e 6n!')
return
res = Cont()
perm = res.contag(6, n)
y = np.empty(0)
for pmb in perm:
y = np.append(y,np.sum(pmb))
res = {'x':[],'P&X=x)'":[1%}
for k in range(n,6*n+1):
res['P(X=x) '] .append(np.mean(y == k))
res['x'] .append (k)
return pd.DataFrame(res)
Probabilidades da diferencga entre
duas faces de dois dados equilibrados
em moédulo - retorna P(X=x), X=|i-jl
def difabs2faces(x):
if x<0 or x>5:
print('x deve estar entre 0 e 5!')
return
res = Cont()
perm = res.contag(6, 2)
y = np.empty(0)
for pmb in perm:
y = np.append(y,abs(np.diff (pmb)))
return np.mean(y == x)
Probabilidades da diferenga entre
duas faces de dois dados equilibrados
em médulo - retorna P(X=x), para todo
o suporte de x
def difabs2facessx():
if x<0 or x>5:
print('x deve estar entre 0 e 5!')
return

7.5. ALGUNS PROBLEMAS DE PROBABILIDADE

res = Cont()

perm = res.contag(6, 2)

y = np.empty(0)

for pmb in perm:
y = np.append(y,abs(np.diff (pmb)))

res = {'x':[],'PX=x)"':[1}

for k in range(0,5+1):
res['P(X=x) '] .append(np.mean(y == k))
res['x'].append (k)

return pd.DataFrame(res)

Exemplo

n=4

x =4

print('P(X =',x,') = ',somafaces(n,x))
dist = somafacessx(n)

dist

sum(dist['P(X=x)']) # checando
print('P(X =',x,') = ',difabs2faces(x))
difabs2facessx ()

P(X =4) = 0.0007716049382716049

P(X=x)

X
4 0.000772
5 0.003086
6 0.007716
7
8

0.015432

0.027006
9 0.043210
10 0.061728
11 0.080247
12 0.096451
0.108025
0.112654
0.108025
0.096451
0.080247
0.061728
0.043210
0.027006
0.015432
0.007716
0.003086
0.000772

00 O Ui W+~ O

DO = = = = = e e e e = ©
O © 00 O Uik WNH—=O

DO DO DD DO DD = = = e e
=W N = O © 000 Ok Ww

1.0
P(X=4)= 0.1111111111111111

x P(X=x)
0 0 0.166667

131

132 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANALISE COMBINATORIA EM PYTHON

x PX=x)
1 1 0.277778
2 2 0.222222
3 3 0.166667
4 4 0.111111
5 5 0.055556

7.6 Exercicios

1. Obter uma funcio para obter por meio de simulagdo Monte Carlo as probabilidades dos langamentos
de n dados e obtengao da soma e também para as diferengas em médulo entre as faces nos lancamentos
de dois dados. Para fazer isso escolha um grande ntimero de repeticoes e em cada uma delas simule
os resultados dos langamentos dos dados. Obtenha os resultados das varidveis aleatorias e ao final
calcule as proporgoes de cada ocorréncia, conforme fizemos de forma exata anteriormente. Estas
proporgoes sao estimativas empiricas das probabilidades almejadas.

2. Obtenha também por Monte Carlo as probabilidades empiricas de uma mao de pdquer, simulando
um grande numero de maos. Para isso é preciso criar um baralho, que pode ser feito com um
dicionario e depois amostrar as maos de cinco cartas e calcular as probabilidades empiricas de cada
possivel resultado. Confrontar com as probabilidades exatas obtidas neste capitulo. O que vocé
espera que ocorra com essa comparacao quando aumenta-se o nimero de simulagoes?

Chapter 8

Métodos Bootstrap em Python

Neste capitulo, pretendemos apresentar os conceitos basicos de bootstrap de uma forma bastante simples.
Vamos fazer algumas fungdes simples em alguns casos particulares.

8.1 Introducao

Um dos principais temas envolvendo os métodos computacionalmente intensivos e, talvez, o maior
responsavel pela popularidade desses métodos é a técnica bootstrap. O método bootstrap envolve
reamostragens com reposicao da amostra original. Inspirado na teoria da amostragem, o bootstrap é
utilizado para a realizacao de testes de hipétese, estimagao de pardmetros por intervalos e estimagao de
erros padroes.

A grande vantagem de se utilizar os métodos de reamostragens, como o bootstrap, para realizar inferéncia
é quando nao conhecemos a distribuigdo de probabilidade da populac¢do e o modelo normal nao é adequado
para os dados ou residuos. O problema surge, quando violamos as condigdes assumidas para a aplicacdo
de um teste ou obtencdo de um intervalo ou regiao de confianga.

Neste capitulo, estudaremos os métodos bootstrap para realizar inferéncia sobre pardmetros de interesse.

8.2 Bootstrap Nao-Paramétrico

Bootstrap nao-paramétrico: a ideia é realizar reamostragem da amostra original. Seja amostra aleatéria
de tamanho n, Y7, Y3, ..., Y,, de uma populacdo com distribui¢do desconhecida e cujo interesse é um
parametro 6, podemos obter uma série de reamostragem com reposicao de tamanho n e estimar o parametro
de interesse por uma funcgao 6 das amostras obtidas.

Essa série de estimativas obtidas é finita e representa uma amostra da distribuicéo do estimador, permitindo
que possamos fazer inferéncia sobre 6. Se pudéssemos obter a distribuicao de amostragem de 0 diretamente
da teoria de amostragem, poderiamos fazer inferéncias sobre 6 sem a necessidade de utilizar bootstrap.
Para isso, devemos conhecer a distribuicdo de probabilidade de Y}, j =1, 2, ..., n e, a partir dela,
deduzirmos a distribuicdo de amostragem da fungdo de interesse 0.

Nem sempre isso é possivel, principalmente se ndo conhecemos a distribui¢ao de probabilidade da varidvel
aleatéria que estamos amostrando. Para a maior parte dos modelos probabilisticos, teorias exatas nao sao
conhecidas ou sao intrataveis analiticamente. Nesse caso, usamos a distribuicao de probabilidade empirica,
pela qual atribuimos a cada uma das observagdes amostrais a probabilidade 1/n;

133

134 CHAPTER 8. METODOS BOOTSTRAP EM PYTHON

A ideia do bootstrap é substituir a distribuicdo desconhecida da populagao pela distribuicdo empirica. Por
essa razao, que denominamos esse método de bootstrap nao-paramétrico. Ao obtermos um série finita de
reamostragens de mesmo tamanho da amostra original e construirmos uma amostragem da distribuigao
do estimador, estamos realizando um processo de mimica em relagdo a teoria de amostragem.

Esse processo se baseia no fato de que a amostra obtida da populagdo contém toda a informagao disponivel
dessa populagao subjacente. Entao, ela passa a representar a “populacao” para o processo de reamostragem.

Efron (1979) foi o pesquisador que organizou as teorias a respeito desse método e conectou o bootstrap

nao-paramétrico com as técnicas estatisticas para estimar erros, aceitas desde os anos de 1930, tais como

jackknife e o método delta. Tanto a técnica bootstrap quanto os métodos de permutagdo assumem apenas

que as varidveis aleatérias atendam ao principio de serem permutédveis (exchangeable), que é uma suposicao

mais fraca que sejam independentes e identicamente distribuidas. Por permutaveis (intercambidveis)

devemos entender que a distribuigdo de probabilidade de quaisquer k observagoes consecutivas (k = 1, 2,
.., m) néo se altera quando a ordem das observagoes é trocada por meio de alguma permutagao.

O algoritmo geral das reamostragens bootstrap, para estimar um pa-ra-me-tro 6 desconhecido, cuja
distribuicdo de probabilidade é f (de Y'), considerando, ainda, que o estimador 6 é uma fungao dos valores
amostrais, ou seja, § = g(Y1, Ys, ..., Y},), é dado por:

1. atribuir massa de probabilidade 1/n para cada observagdo amostral Yj, j =1, 2, ..., n, criando a
distribuicao de probabilidade empirica f ;

2. gerar amostras aleatorias com reposicao da distribuicdo de probabilidade empirica f , denominada
de amostra de bootstrap e dada por Y7, Ya, ..., Yy:

3. calcular uma estimativa de 6 por 0, usando a amostra de bootstrap no lugar da amostra original, da
seguinte forma 0 = g(Y1, Yo, ..., Yo);

4. repetir os passos 2 e 3 B vezes.

O numero de reamostragens foi denotado por B e a escolha de valores adequados conforme a situacgao
serd discutida posteriormente. A inferéncia que pretendemos realizar depende da distribuicdo descon-
hecida de 6 — 6. Quando aplicamos o algoritmo anterior, obtemos uma amostra Monte Carlo, da
distribuicao de bootstrap, da quantidade 6 — 6. Se n for suficientemente grande, pelas ideias do método
bootstrap, extremamente comprovadas e aceitas atualmente, esperamos que as duas distribuigoes sejam
aproximadamente idénticas.

8.3 Estimacao

Para estimar pardmetros de uma populagao, a técnica bootstrap é uma excelente alternativa, principalmente
se a distribuicdo nao for a normal, ou outra distribui¢do, cujos processos de estimagdo sejam bem
fundamentados teoricamente, como, por exemplo, a estimacdo de proporc¢des binomiais p. Se o método
bootstrap for aplicado a esses casos, ndo serd um problema, pois os resultados serdo equivalentes ao da
teoria classica.

No entanto, se as suposi¢gdes de um processo de estimagao classico forem violadas, em geral, os métodos
bootstrap resultardo em processos de estimagao com melhores propriedades. Inicialmente, devemos
entender que os métodos bootstrap ndo melhoram as estimativas pontuais, mas fornecem mecanismos
apropriados para estimar os erros padroes, intervalos de confianga e a distribuicdo de amostragem do
estimador, por mais complexo que seja esse estimador.

8.3.1 Erro padrao:

Para a estimagao do erro padrao de um estimador # de um parametro 6, devemos obter a distribuicao
bootstrap desse estimador, conforme descrito no algoritmo anteriormente apresentado. Assim, se consider-
armos uma amostra aleatoria Y7, Yo, ..., Y, de tamanho n da populagdo de interesse, que depende de um

8.3. ESTIMACAO 135

parametro 6, que pretendemos estimar, entao aplicamos o algoritmo anterior e obtemos uma amostra
bootstrap de tamanho B da distribuicao desse estimador.

Se a amostra for 1, 0o, 05, ..., 5, podemos estimar o erro padrio de 0 por

1 5 A\2 1 3 16
Si=\por e (B-0) = |51 [X8 -5 &L

em que

Depreendemos da expressao (Equation 8.1), que o erro padréo do estimador de 6 é o desvio padrao da
distribui¢do bootstrap desse estimador. Se, entretanto, o parametro 6 for a média p da distribuicdo de
probabilidade amostrada, podemos simplificar a expressao do estimador do erro padrao da média amostral
Y, pois, nesse caso, ndo precisamos da amostra bootstrap do estimador.

Da teoria estatistica, sabemos que o erro padriao da média amostral Y é dado por Sy = (1/n)/2S, sendo
S dado por

- >y

import numpy as np
import matplotlib.pyplot as plt
import random
fungdo para retornar a mediana
def est_med(x):
y = np.sort(x)
n = len(x)
if n%2 == 0:
est = (y[n//2 - 1] + y[(n+t2)//2 - 11) / 2
else:
est
return est

y[(n+1) // 2 - 1]

funcdo para o minimo
def est_min(x):
return np.min(x)

funcdo para o maximo
def est_max(x):
return np.max(x)

funcdo para fazer uma reamostragem bootstrap
e aplicar o estimador genérico est, recebendo
x uma lista numpy
def sampleOneBoot(x, est, *args):

y = random.choices(x, k = len(x))

estm = est(y, *args)

136 CHAPTER 8. METODOS BOOTSTRAP EM PYTHON

return estm

funcdo para obter a distribuigdo de bootstrap
def dist_boot(x, est, B = 2000, *args):
dist = np.empty(0)
for i in range(B):
dist = np.append(dist, sampleOneBoot(x, est, *args))
return dist

funcdo para obter o erro padrdo do estimador
def stderr_est(x, est, B = 2000, *args):
result = dist_boot(x, est, B, *args)
se_boot = np.std(result)
est_boot = est(x, *args)
return {"Estimativa": est_boot, "Erro padr&o": se_boot}

estimar mediana normal
= 300
2000
np.random.normal (size=n)
dist = dist_boot(x, est_med)
plt.clf() # limpar o grafico
graf=plt.hist(dist,bins='auto',color="'#14e8f3',rwidth=0.98,alpha=0.7) #histograma
print('Média: ',np.mean(dist), 'e Desvio padrdo: ', np.std(dist, ddof=1))
res_med = stderr_est(x, est_med, B)
for key, value in res_med.items():
print (f"{key}: {valuel}")
valor tedrico: aprox. (pi/2)°0.5*sigma/n~0.5
print ((np.pi/2)**0.5%1/n**0.5)

#
n
B
X

minimo de uma normal

res_min = stderr_est(x, est_min, B)

for key, value in res_min.items():
print (f"{key}: {valuel}")

maximo de uma normal

res_max = stderr_est(x, est_max, B)

for key, value in res_max.items():
print (f"{key}: {valuel}")

Média: 0.06667392719202572 e Desvio padrdo: 0.07132297691219258
Estimativa: 0.044016616671861214

Erro padrdo: 0.07066972226997008

0.07236012545582675

Estimativa: -2.533746323239818

Erro padr&o: 0.04863777469304032

Estimativa: 2.6917080703170906

Erro padrdo: 0.10761714347950621

8.3. ESTIMACAO 137

350 A

300 A

250 A

200 A

150 A

100 A

50 A

-0.2 -0.1 0.0 0.1 0.2 0.3

8.3.2 Correcao de Viés:

Devemos explorar no bootstrap a possibilidade de correcao de viés para estimadores viesados. Sabemos
da teoria classica que o viés 6 de um estimador 0 é definido por

5; = E6) -6, (8.3)

Como na distribuicdo de bootstrap de um estimador é, a média representa a esperanca em (Equation 8.3)
e o estimador # na amostra original, faz o mesmo papel de € na populacio, podemos estimar o viés por

Yl

o;=0—90. (8.4)

E comum pensarmos que 6 seria o estimador corrigido para viés, o que nao é verdade. Podemos obter um
estimador ajustado por

05 =0 — 6
20 —

+6

Sty

:é—

<y >

)

Na sequéncia, abordaremos alguns dos diferentes tipos de intervalos de confianca usualmente empregados
com o método denominado bootstrap nao-paramétrico.

fungdo para obter o erro padrdo do estimador
e aplicar a correcgdo de viés
def stderr_vies_est(x, est, B = 2000, *args):
result = dist_boot(x, est, B, *args)
se_boot = np.std(result)
est_boot = est(x, *args)
mean_boot = np.mean(result)
vies_boot = mean_boot - est_boot
est_nvies = est_boot - vies_boot
return {"Estimativa": est_boot, "Erro padr&o": se_boot, \
"Viés ": vies_boot, "Est. N&o Viesada ": est_nvies}

138 CHAPTER 8. METODOS BOOTSTRAP EM PYTHON

estimar mediana exponencial e erro padréo
import scipy as sp

n = 300
B = 2000
lamb = 0.1

x = np.random.exponential(scale = 1 / lamb, size = n)
dist = dist_boot(x, est_med)
plt.clf() # limpar o grafico
graf=plt.hist(dist, bins='auto',color='#14e8f3',rwidth=0.98,alpha=0.7) # histograma
res_med = stderr_vies_est(x, est_med, B)
for key, value in res_med.items():
print (f"{key}: {valuel}")
mediana tedrica
sp.stats.expon.ppf (0.5, scale = 1 / lamb)

Estimativa: 6.920665900096914

Erro padrdo: 0.6460979643128233

Viés : -0.025083656725473524

Est. Ndo Viesada : 6.9457495568223875

np.float64(6.931471805599453)

250 A

200 ~

150 A

100 A

50 A

8.3.3 Intervalo de Confianca Padrao de Bootstrap

Em algumas ocasioes, podemos assumir que a distribuicdo de bootstrap do estimador 6 é normal. Isso
ocorre em situagoes especiais de amostragem: como o caso especifico de 0 ser a média amostral Y em
amostragem da distribuigdo normal e, também, no caso de amostras grandes n em consequéncia do
teorema do limite central.

Sabemos que # é uma funcao dos elementos amostrais e, em consequéncia disso, para muitas dessas fungoes,
a distribuicdo normal ocorre como decorréncia do teorema do limite central. Infelizmente, a experiéncia
tem mostrado que esse intervalo é via de regra geral, muito pobre, no sentido de que as suas propriedades
nao sdo preservadas.

8.3. ESTIMACAO 139

A principal propriedade requerida de um intervalo de confianca é que ele possua probabilidade de cobertura
igual ao valor nominal de confianca 1 — a adotado, o que, em geral, ndo é atendida nesse caso. A ideia é
admitir o efeito do teorema do limite central:

§~N (é, Sg) : (8.5)

em que, onde se encontra o simbolo ~, deve se ler “se distribui aproximadamente como”, 6 é o valor do
estimador na amostra original e S5 é o estimador do erro padrao de 6, obtido na distribuicao bootstrap.

Em consequéncia de (Equation 8.5}), podemos construir o intervalo bootstrap padréo com confianca de
aproximadamente 1 — a por

1C1_o(0) : [é — Zy_ayaSy; 0 — Za/zsé} : (8.6)

em que Z, /2 € Z1_q /2 530 0s quantis da distribuigdo normal padrao. O intervalo de confianga (Equation 8.6),
como ja haviamos comentado, possui probabilidade de cobertura, em geral, inferior ao valor nominal de
100(1 — «)%.

Podemos melhorar este intervalo obtendo os limites do intervalo de confianca usando um estimador
corrigido para viés. . O resultado para este caso é:

IOl_a(G) : [éajA — Zl,a/gseﬁ éaj_ — ZQ/QSQA} s (8.7)

em que éaj_ é dado em (Equation 8.5).
fungdo para obter o IC padréo
com correcdo de viés
def ic_padrao_cv_boot(x, est, B = 2000, alpha = 0.05, *args):
res = dist_boot(x, est, B, *args)
est_boot = est(x, *args)
se_boot = np.std(res)
mean_boot = np.mean(res)
vies_boot = mean_boot - est_boot
me = sp.stats.norm.ppf(l - alpha / 2) * se_boot
1li = est_boot - vies_boot - me
1s est_boot - vies_boot + me
return {'estimativa': est_boot, 'erro padrdo': se_boot, \
'viés': vies_boot, 'limite inferior': 1li, 'limite superior': ls}

exemplo para a mediana exponencial
n = 30
B 2000
lamb = 0.1
alpha = 0.05
x = np.random.exponential(scale = 1 / lamb, size = n)
res_med = ic_padrao_cv_boot(x, est_med, B, alpha)
for key, value in res_med.items():
print (f"{key}: {valuel}")
mediana tedrica
sp.stats.expon.ppf (0.5, scale = 1 / lamb)

estimativa: 7.121971822984506
erro padrdo: 1.2075535335307557
viés: 0.2479684553330932

140 CHAPTER 8. METODOS BOOTSTRAP EM PYTHON

limite inferior: 4.507241932527051
limite superior: 9.240764802775775

np.float64(6.931471805599453)

A seguir, apresentamos um exemplo para a distribuigdo gama. Nos subsequentes exemplos, usaremos a
mesma amostra da mesma distribuicao.

Exemplo para a mediana da gama

n = 30

B = 2000
alpha = 0.05
a =0.5

x = np.random.gamma(a, size = n)
res_med = ic_padrao_cv_boot(x, est_med, B, alpha)
for key, value in res_med.items():
print (f"{key}: {valuel}")
mediana tedrica
sp.stats.gamma.ppf (0.5, a)

estimativa: 0.18434901349210409

erro padrdo: 0.10655478333944343
viés: 0.030653412645146122

limite inferior: -0.05514793687881975
limite superior: 0.3625391385727357

np.float64(0.227468211559786)

8.3.4 Intervalo de Confianca Baseado em Percentis Bootstrap

E um dos mais interessantes, pois sua obtencdo ¢, no minimo, curiosa. Assumir, normalidade da distribuicdo
bootstrap ¢ subutilizar o potencial do método. Entretanto, podemos pensar que existe uma fungao ¢
mondtona, tal que ¢(6) tenha distribui¢do normal.

Se obtivermos a distribuicdo de bootstrap dessa fun¢do, obtida pela sua aplicacdo em cada reamostragem
com reposi¢do da amostra original, podemos obter seu desvio padrao S 5(0)" Como essa distribuicdo, obtida
considerando um ntmero finito B, é uma amostra de uma distribuicdo normal, os intervalos obtidos por

ICl—a(¢(9)) : [¢(é) - Zl—a/2S¢(§); ¢(é) - Za/25¢(§)]

ou diretamente ordenando-se a amostra de tamanho B da distribuicdo bootstrap e tomando-se os seus
percentis 100(c/2)% e 100(1 — «/2)%, devem se equivaler na medida em que B — oc.

Segundo Efron e Tibshirani (1993), a transformacao ¢ que ird levar a normalidade sempre existe. Dessa
forma, o intervalo de confiancga para 6, uma vez que ¢ é uma funcdo mondétona, é dado por

1Cya(6) : 67 (6(0) = Z1-apSy@)) 1 07 (60) = ZaoSya))] (8.8)

em que ¢! é a funcdo inversa de ¢.

Podemos verificar de (Equation 8.8) que, o intervalo de confianga para o pardmetro na escala original é
obtido pela transformacio inversa dos limites do intervalo obtidos na escala transformada. Utilizamos em
(Equation 8.8) a transformagcao inversa dos limites obtidos a partir dos percentis normais padrao e da
média e variancia da distribuicdo de bootstrap para os obtencao dos limites do intervalo de confianga
na escala original. Entretanto, poderiamos ter utilizado uma versdo que usaria a transformacdo inversa

8.3. ESTIMACAO 141

dos percentis 100(a/2)% e 100(1 — a/2)% obtidos diretamente da distribui¢do de bootstrap na escala
transformada.

Isso pode ser feito, em virtude do que acabamos de comentar, ou seja, que a distribuicdo de bootstrap
obtida pela transformacao, exceto pelo fato de ser uma amostra finita, ¢ normal e os dois intervalos na
escala transformada se equivalem assintoticamente.

Posto dessa forma, parece ser facil obter um intervalo como o apresentado em (Equation 8.8). Isso nao
é verdade, pois necessitariamos obter a funcao ¢, que levaria a uma distribuicdo de bootstrap normal.
Encontrar tal funcao para cada caso real é uma tarefa inexequivel. Por outro lado, ndo precisamos conhecer
tal funcao, basta pressupor sua existéncia.

Como os valores do intervalo, obtidos na escala transformada, quando mapeados na escala original sao
equivalentes aos percentis 100(a/2)% e 100(1—a/2)% da distribuicio de bootstrap de 0, entdo a construgao
do intervalo de confianca por esse método é trivial. Esse resultado é extremamente interessante e foi
preponderante para o sucesso dos métodos de estimagao bootstrap. Como afirmam Efron e Tibshirani
(1993), podemos entender o método dos percentis para a obtengdo do intervalo de confianca, como sendo
um algoritmo automatico de incorporacao de tais transformacgoes que levam a normalidade. Para que fique
mais claro, podemos dizer que os limites obtidos de (Equation 8.8) correspondem exatamente ao intervalo
baseado em percentis da distribuicao de bootstrap na escala original, portanto nao precisamos conhecer a
transformagao que irda conduzir a distribuicdo de bootstrap a normalidade, mas apenas pressupor sua
existéncial

Para aplicar o intervalo de confianga baseado em percentis bootstrap, devemos aplicar o algoritmo
anteriormente apresentado. Obtemos: 61, 05, 03, ..., Op.

Devemos ordenar esses valores, obtendo as estatisticas de ordem por: é(l), 5(2), 9(3), e é(B). Em seguida,
podemos obter o intervalo de confianca a partir dessa func¢ao de distribuicdo empirica, obtendo os percentis
100(ee/2)% e 100(1 — «/2)%. Assim, construimos o intervalo de confianga baseado em percentis bootstrap
por 5 ~

1C1-(0) = [0k O] » (8.9)

em que ky = |[(B+1)(a/2)] e ky = [(B+ 1)(1 — a/2)], ou seja, sdo os maiores inteiros que nio sao
maiores que (B + 1)(a/2) e (B 4 1)(1 — /2), respectivamente; ;) é o percentil 100(/2)% da funcao
de distribui¢do bootstrap empirica; e é(k2)> o percentil 100(1 — «/2)% da funcdo de distribuigdo bootstrap
empirica.

Esse intervalo possui propriedade melhores que o anterior e funciona bem na maioria dos casos mais
simples. Entretanto, existem alternativas melhores. Veremos, a seguir, alguns outros tipos de intervalos
que sao melhores que os dois primeiros, embora em algumas situagoes o método percentil é superior a
alguns deles.

Uma grande vantagem do intervalo percentilico é que ele possui a propriedade de respeitar a transformagao,
ou seja, os limites desse intervalo obedecem ao dominio do parametro que estd sendo estimado, o que, em
alguns métodos, nao ocorre.

funcdo para obter o IC Percentis
def ic_perc_boot(x, est, B = 2000, alpha = 0.05, *args):
res = dist_boot(x, est, B, *args)
est_boot = est(x, *args)
se_boot = np.std(res)
mean_boot = np.mean(res)
vies_boot = mean_boot - est_boot
li, 1s = np.percentile(res, [alpha/2 * 100, (1-alpha/2) * 100])
return {'estimativa': est_boot, 'erro padr&o': se_boot, \
'viés': vies_boot, 'limite inferior': 1i, 'limite superior': ls}

142 CHAPTER 8. METODOS BOOTSTRAP EM PYTHON

Exemplo para a mediana da gama

= 2000
alpha = 0.05
res_med = ic_perc_boot(x, est_med, B, alpha)
for key, value in res_med.items():

print (f"{key}: {valuel}")

mediana tedrica
sSp.stats.gamma.ppf (0.5, a)

estimativa: 0.18434901349210409

erro padrdo: 0.11110870673684117
viés: 0.034308486716213726

limite inferior: 0.10628122070963494
limite superior: 0.522791903746331

np.float64(0.227468211559786)

8.3.5 Intervalo de Confianca Basico de Bootstrap

Variagao do intervalo baseado em percentis bootstrap, resulta da obtencao da distribuicao de 6 — é que
representa, simplesmente, a versao bootstrap da distribui¢ao de amostragem de 6 — 0. Para grandes
valores de B, 6 — 0 converge em distribuicao para 6— 6.

Se considerarmos que existe uma funcao ¢>(9 — 9) monétona, capaz de conduzir a normalidade, entao
seria necessdrio obtermos, apenas, os percentis 100(a/2)% e 100(1 — «/2)% da distribui¢ao original, pois
eles mapeiam valores equivalentes na escala normal transformada.

(e/2)

Se denotarmos por § e 6(17%/2) esses percentis na escala original, entdo

P/ <f—0 <3507/ —1—aP [/ —§<§-6<d0/) g =1-a.

Como

0-0%0—0,

entdo, substituindo na expressao anterior, temos

p P(a/m < f—p< g/ _é} —1-a.

Se isolarmos 6 teremos

P20 002/ <9< 26— § /)] =1-a. (8.10)

Os limites da afirmativa probabilistica em (Equation 8.10) séo os limites de uma intervalo de 100(1 —
a)% de confianca de bootstrap bdsico, dado por

1Cy_(0) : [20 - 90/ 20 — /)] (8.11)

Esse intervalo pode também ser visto como o intervalo de confiancga t de bootstrap, que serd o proximo a ser
estudado, quando o erro padrédo em cada reamostragem for considerado igual a unidade. As quantidades
6(1=2/2) ¢ §(@/2) (o intervalo (Equation 8.11) sdo, respectivamente, os percentis 0, (k1) © 9(k2 do intervalo
(Equation 8.9) baseado em percentis. Observamos que o presente método é apenas uma variagdo do
método percentil.

8.3. ESTIMACAO 143

funcdo para obter o IC Padrdo Bésico
def ic_basic_boot(x, est, B = 2000, alpha = 0.05, *args):
res = dist_boot(x, est, B, *args)
est_boot = est(x, *args)
se_boot = np.std(res)
mean_boot = np.mean(res)
vies_boot = mean_boot - est_boot
ls, 1i = np.percentile(res, [alpha/2 * 100, (1 - alpha / 2) * 100])
1i 2 * est_boot - 1i
1s 2 * est_boot - 1s
return {'estimativa': est_boot, 'erro padr&o': se_boot, \
'viés': vies_boot, 'limite inferior': 1li, 'limite superior': ls}

Exemplo para a mediana da gama
B = 2000
alpha = 0.05
res_med = ic_basic_boot(x, est_med, B, alpha)
for key, value in res_med.items():
print (f"{key}: {valuel}")
mediana tedrica
sp.stats.gamma.ppf (0.5, a)

estimativa: 0.18434901349210409

erro padrdo: 0.10683319258172806
viés: 0.028989179933882142

limite inferior: -0.15409387676212283
limite superior: 0.2640911682718689

np.float64(0.227468211559786)

8.3.6 Intervalo de Confianca Bootstrap com Correcao de Viés Acelerado

Os intervalos de confianga bootstrap, anteriormente apresentados, possuem deficiéncias relativas as
probabilidades de cobertura, pelo menos, em parte das situagoes praticas. Outro método de obtencdo de
intervalos bootstrap possui qualidades melhores do que os intervalos anteriores, embora possua maiores
dificuldades de obtengdo: bootstrap com corregio de viés acelerado, bias-corrected and accelerated (BC,,).

Este é o método ideal a ser utilizado. O método BC,, é obtido de forma semelhante ao método bootstrap
percentil, porém ao se determinar os percentis da distribui¢do empirica de bootstrap 5(1), 5(2), 5(3), R
5(p) do estimador, duas quantidades a e 2y sdo necessarias também. As quantidades a e Zy sdo definidas
como aceleragdo e correcao de viés;.

O intervalo de confianga baseado em percentis bootstrap com corre¢ao de viés acelerado, BC,, é dado por
ICl_a(B) . [é(k1)7 é(kz)} 5 (812)

em que ky = [(B+1)p1]| e k2 = [(B + 1)p2], ou seja, sdo os maiores inteiros que nao sio maiores que
(B 4+ 1)p1 e (B + 1)p2, respectivamente; 0,y é o percentil 100(p1)% da funcao de distribuigao bootstrap

empirica; e (), o percentil 100p2% da funcao de distribuigao bootstrap empirica.

Para valores conhecidos de a e 2o, os valores de p; e pe, usados para determinar as ordens k1 e ko do valor
de € na distribuigdo empirica de bootstrap, conforme apresentado em (Equation 8.12), sdo determinados

144 CHAPTER 8. METODOS BOOTSTRAP EM PYTHON

por

20 + 24 20+ 21—a
pr=®| %+ AO — /2 epa=® | 2+ AO — 1-a/2 R (813)
l—a[zoJrza/Q] lfa[ZOJer_a/g}

em que ®(r) é a funcdo de distribuicdo da normal padrao avaliada no valor x e z,/3 € 21_q/2 580 08
quantis 100(a/2)% e 100(1 — a/2)% dessa mesma distribuigdo, respectivamente.

Se tanto @ quanto 2y forem nulos, os valores de p; e ps serdo, respectivamente, «/2 e 1 — /2, como pode
ser facilmente deduzido de (Equation 8.13). Nesse caso, os intervalos BC,, expressdo (Equation 8.12) e
bootstrap percentil, expressao (Equation 8.9), sdo equivalentes. Valores ndo nulos dessas quantidades,
modificam os limites do intervalo (Equation 8.12) e reduzem algumas deficiéncias do intervalo percentilico
(Equation 8.9), conforme afirmam Efron e Tibshirani (1993).

O valor de % é definido como o quantil da normal padrao cuja probabilidade acumulada é dada pela
proporc¢ao de estimativas na distribuicao de bootstrap que é menor que a estimativa de # na amostra
original. Esse valor reflete a discrepancia que existe entre a mediana da distribuicdo de 6 e a mediana da
distribuicao de é, expressa em unidades normais padrao.

Assim, definimos 2y por

=01 = — (8.14)

em que ®~1(p) é a inversa da funcio de distribuicio da normal padrdo avaliada em p entre 0 e 1 e I(-) é a
funcao indicadora que retorna 1 se o valor de seu argumento for verdadeiro e 0, se for falso.

O valor %y sera zero somente se a proporgao de valores da distribuicdo de bootstrap que sdo inferiores
a 0 for igual a 50%. O valor de @ pode ser calculado utilizando estimativas jackknife do parametro de
interesse.

Admitamos que o estimador 8 seja obtido por uma fungéo do vetor de observagdes amostrais Y = [V7,
Ya, ..., ¥,]T por 6 = g(Y). Se eliminarmos a i-ésima observagao Y; teremos o vetor Yo =M, Y, ..,
Y;_1, Yit1, - -+ Yn] T, que corresponde ao vetor original sem a i-ésima observagio. O estimador jackknife
¢ obtido aplicando-se essa mesma funcao ao vetor resultante sem a i-ésima observacao, sendo dado 6;) =
H(Y(i))-

Se calcularmos a média das n estimativas jackknife, obtidas com a eliminagdo de cada uma das n
observagoes originais, por

n
>0

A i=1
bo="—"

a aceleracao a pode ser obtida por

= . (8.15)

o[S -5

i=1

>
Il

A quantidade a é chamada de aceleragdo porque representa a taxa de mudanga do erro padrao de 0 em
relagdo & mudanca dos valores do pardmetro verdadeiro § (EFRON; TIBSHIRANI, 1993). Esse intervalo
de confianga, possui duas vantagens: a) resultar em estimativas dos limites do intervalo de confianca dentro

8.3. ESTIMACAO 145

do espago paramétrico, ou seja, possui a propriedade de respeitar a transformacio; e b) fornecer resultados
muito precisos, no sentido de que as probabilidades de cobertura P(6 < fx,)) = a/2 e P(6 > O1,)) = /2
sao observadas com precisao de segunda ordem, enquanto o método percentil bootstrap possui precisao de
primeira ordem apenas.

fungdo auxiliar para cdmputo da aceleracgéo
def aceler(x, est, *args):
n = len(x)
ai = np.empty(0)
for i in range(n):
yi = np.delete(x, i)
ai = np.append(ai, est(yi, *args))
ab = np.mean(ai)
a = np.sum((ab - ai)**3)/(6*(np.sum((ab - ai)**2))**1.5)
return a

funcdo para obter o IC com correcdo de viés acelerado
def ic_cva_boot(x, est, B = 2000, alpha = 0.05, *args):
res = dist_boot(x, est, B, *args)
est_boot = est(x, *args)
p = np.sum(res < est_boot) / B
z0 = sp.stats.norm.ppf (p)
zl = sp.stats.norm.ppf (alpha / 2)
z2 = sp.stats.norm.ppf(1 - alpha / 2)
a = aceler(x, est, *args)
aux = z0 + (z0+z1)/(1-ax(z0+z1))
pl = sp.stats.norm.cdf (aux)
aux = z0 + (z0+z2)/(1-a*x(z0+z2))
p2 = sp.stats.norm.cdf (aux)
se_boot = np.std(res)
mean_boot = np.mean(res)
vies_boot = mean_boot - est_boot
1li, 1s = np.percentile(res, [pl * 100, p2 * 100])
return {'estimativa': est_boot, 'erro padr&o': se_boot, \
'viés': vies_boot, 'limite inferior': 1li, 'limite superior': ls}

Exemplo para a mediana da gama
B = 2000
alpha = 0.05
res_med = ic_cva_boot(x, est_med, B, alpha)
for key, value in res_med.items():
print (f"{key}: {valuel}")
mediana tedrica
sp.stats.gamma.ppf (0.5, a)

estimativa: 0.18434901349210409

erro padrdo: 0.11131360747763198
viés: 0.029795316338799505

limite inferior: 0.09684162620102166
limite superior: 0.47855955490926155

np.float64(0.227468211559786)

146 CHAPTER 8. METODOS BOOTSTRAP EM PYTHON

8.3.7 Intervalo de Confianca Bootstrap com Correcao de Viés

Esse método é uma variagdo do método anterior, em que a aceleragdo & é considerada nula. Nesse caso, o
intervalo de confianga é obtido pela mesma expressio (Equation 8.13), embora os valores de p; e ps sejam
calculados por

p1 =P (22 + 2a/2) €p2 =P (220 + 21-0/2) (8.16)

sendo Zg obtido da mesma forma que foi descrito anteriormente, por intermédio da equagdo (Equation 8.14).

Esse método é particularmente interessante em algumas situagoes em que os valores de @ sao dificeis de
ser obtidos. Esses casos sdo discutidos em Efron e Tibshirani (1993). Entretanto, o método BC, é, em
geral, mais eficiente e deve ser preferido.

funcdo para obter o IC com corregdo de viés
def ic_cv_boot(x, est, B = 2000, alpha = 0.05, *args):
res = dist_boot(x, est, B, *args)
est_boot = est(x, *args)
p = np.sum(res < est_boot) / B
z0 = sp.stats.norm.ppf (p)
zl = sp.stats.norm.ppf (alpha / 2)
z2 = sp.stats.norm.ppf(l - alpha / 2)
aux = 2 * z0 + z1
pl = sp.stats.norm.cdf (aux)
aux = 2 * z0 + z2
p2 = sp.stats.norm.cdf (aux)
se_boot = np.std(res)
mean_boot = np.mean(res)
vies_boot = mean_boot - est_boot
1i, 1ls = np.percentile(res, [pl * 100, p2 * 100])
return {'estimativa': est_boot, 'erro padr&o': se_boot, \
'viés': vies_boot, 'limite inferior': 1li, 'limite superior': ls}

Exemplo para a mediana da gama
B = 2000
alpha = 0.05
res_med = ic_cv_boot(x, est_med, B, alpha)
for key, value in res_med.items():
print (f"{key}: {valuel}")
mediana tedrica
sSp.stats.gamma.ppf (0.5, a)

estimativa: 0.18434901349210409

erro padrdo: 0.11224200627330427
viés: 0.03110938583237599

limite inferior: 0.10460685871233927
limite superior: 0.49595665024558944

np.float64(0.227468211559786)

8.3.8 Bootstrap no Python

Entre algumas possibilidades, podemos utilizar scipy.stats.bootstrap no Python para aplicarmos os
métodos de estimagdo intervalar bootstrap. A fun¢do bootstrap do scipy é dada por bootstrap(data,
statistic, *, n_resamples=9999, batch=None, vectorized=None, paired=False, axis=0,

8.3. ESTIMACAO 147

confidence_level=0.95, alternative='two-sided', method='BCa', bootstrap_result=None,
rng=None, random_state=None). Trés métodos estao disponiveis, quais sdo: method{‘percentile’,
‘basic’, ‘BCa’}, sendo o BCa o método padrdao. O programa a seguir mostra como obter o intervalo de
confianga por este procedimento do scipy.

Os dados tem de ser transformados em uma tupla, antes de usar o método bootstrap. Veja o exemplo:

Demonstrando o scipy.stats.bootstrap

Exemplo para a mediana da gama

B = 2000

alpha = 0.05

x = (x,) # dados devem estar numa tupla de array

res_med = sp.stats.bootstrap(x, est_med, n_resamples=B, \
confidence_level=1-alpha, method='percentile')

print(res_med.confidence_interval)

res_med = sp.stats.bootstrap(x, est_med, n_resamples=B, \
method='basic', confidence_level=1-alpha)

print(res_med.confidence_interval)

res_med = sp.stats.bootstrap(x, est_med, n_resamples=B, \
method='BCa', confidence_level=1-alpha)

print(res_med.confidence_interval)

mediana tedrica

sp.stats.gamma.ppf (0.5, a)

ConfidencelInterval (low=np.float64(0.10628122070963494), high=np.float64(0.522791903746331))
ConfidenceInterval (low=np.float64(-0.15409387676212283), high=np.float64(0.2624168062745732))
ConfidenceInterval(low=np.float64(0.10460685871233927), high=np.float64(0.522791903746331))

np.float64(0.227468211559786)

148 CHAPTER 8. METODOS BOOTSTRAP EM PYTHON

References

A. C. Atkinson and M. C. Pearce. the computer generation of beta, gamma and normal random variable.
journal of the royal statistical society, series a, 139(4):431-461, 1976.

J. N. W. Dachs. FEstatistica computacional: uma introdugdo em turbo Pascal. LTC, Rio de Janeiro, 1988.

L. Devroy. generating the maximum of independent identically distributed random variables. Computers
and mathematics with applications, 6:305-315, 1980.

L. Devroy. Non-uniform random variate generation. springer-verlag, new york, 1986.
D. F. Ferreira. FEstatistica multivariada. Editora UFLA, Lavras, 3 edition, 2018.

R. A. Johnson and D. W. Wichern. Applied multivariate statistical analysis. Prentice Hall, New Jersey, 4
edition, 1998.

V. Kachitvichyanukul and B. W. Schmeiser. binomial random variate generation. Communications of the
ACM, 31(2):216-222, 1988.

Donald E. Knuth. Literate programming. Comput. J., 27(2):97—111, May 1984.

G. Marsaglia and T. A. Bray. A convenient method for generating normal variables. Siam Review, 6(3):
260-264, 1964.

M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions On Modeling and Computer Simulation, 8(1):
3-30, 1998.

B. D. McCullough and B. Wilson. on the accuracy of statistical procedures in Microsoft Excel 97.
Computational Statistics and Data Analysis, 31:27-37, 1999.

T. H. J. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu. Técnicas de simulagcdo em computadores.
Vozes, Petrépolis, 1971.

S. K. Park and K. W. Miller. Random number generators: good ones are hard to find. Communications
of the ACM, 31(10):1192-1201, 1988.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical recipes in Fortran: the art
of scientific computing. Cambridge University Press, Cambridge, 1992.

A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. springer, Berlin, 2000.

L. Schrage. A more portable FORTRAN random number generator. ACM transactions on mathematical
software, 5(2):132-138, 1979.

W. B. Smith and R. R. Hocking. Algorithm AS 53: Wishart variate generator. Applied Statistics - Journal
of the Royal Statistical Society - Series C, 21(3):341-345, 1972.

D. H. D. West. Updating mean and variance estimates: an improved method. ACM transactions on
mathematical software, 22(9):532-535, 1979.

149

150 References

Index

algoritmo

Hasting, 97
amostragem

por rejeicao, 46

beta
incompleta, 93

classe
Python, 114

densidade
exponencial, 48
log-normal, 49
normal, 49
Tukey-lambda, 52
distribuicao
binomial, 54
de combinagoes
lineares, 64
t multivariada
esférica, 72

equacao

recursiva, 78
estatisticas

de ordem, 141

funcao

de distribuicao
binomial, 90
exponencial, 85
normal, 95

de distribuigdo inversa
binomial, 56
exponencial, 48, 85

de probabilidade
binomial, 54, 90
geométrica, 55
Poisson, 94

densidade
exponencial, 85
normal, 87

normal multivariada, 63

Wishart, 68
Wishart invertida, 69
funcoes
trigonométricas, 50

gerador
padrao
minimo, 39
geracao
de varidveis
t multivariada, 72

Jacobiano
da transformacao, 50

lema
soma de binomiais, 54
tempo de espera
da exponencial, 55
da geométrica, 55
linguagem
de alto-nivel, 38

matriz
covariancias, 81

soma de quadrados e produtos, 81

Mersenne
Twister, 40
método
Box-Miiller, 49
congruencial, 37
da inversao
discreto, 56
métodos
listas, 12

nimeros
aleatorios, 37, 39
pseudo-aleatorios, 37
uniformes, 37

precisao
dupla, 40

quadraturas

151

152

gaussianas, 97

Monte Carlo, 98
quantis

exponencial, 85

random, 37
regra
trapezoidal
estendida, 95

simulagao
matrizes aleatérias
Wishart, 70
Wishart invertidas, 70
soma
de produtos, 80

teorema
da transformacao
de probabilidades, 45
tuplas, 14

Wishart
invertida, 69

INDEX

	Prefácio
	Introdução ao Python
	Introdução aos Comandos e Objetos do Python
	Operações Aritméticas Básicas

	Variáveis Booleanas
	Strings
	Listas, Tuplas, Conjuntos e Dicionários
	Listas
	Tuplas
	Conjuntos
	Dicionários

	Matrizes e Arranjos
	Arquivos de Dados
	Estruturas de Controle de Programação
	Funções
	Estatística Computacional
	Exercícios

	Variáveis Aleatórias Uniformes
	Números Aleatórios Uniformes
	Números Aleatórios Uniformes no Python
	Exercícios

	Variáveis Aleatórias Não-Uniformes
	Introdução
	Métodos Gerais para Gerar Realizações de Variáveis Aleatórias
	Variáveis Aleatórias de Algumas Distribuições Importantes
	Distribuição Binomial
	Rotinas Python para Geração de Realizações de Variáveis Aleatórias
	Exercícios

	Geração de Amostras Aleatórias de Variáveis Multidimensionais
	Introdução
	Distribuição Normal Multivariada
	Distribuição Wishart e Wishart Invertida
	Distribuição t de Student Multivariada
	Outras Distribuições Multivariadas
	Exercícios

	Algoritmos para Médias, Variâncias e Covariâncias
	Introdução
	Algoritmos Univariados
	Algoritmos para Vetores Médias e Matrizes de Covariâncias
	Exercícios

	Aproximação de Distribuições
	Introdução
	Modelos Probabilísticos Discretos
	Modelos Probabilísticos Contínuos
	Quadraturas Gaussianas
	Newton-Raphson
	Funções Pré-Existentes no Python
	Exercícios

	Conjuntos e Elementos de Análise Combinatória em Python
	Introdução a Análise Combinatória no Python
	Permutações e Arranjos
	Contagem
	Conjuntos em Python
	Alguns Problemas de Probabilidade
	Exercícios

	Métodos Bootstrap em Python
	Introdução
	Bootstrap Não-Paramétrico
	Estimação
	Erro padrão:
	Correção de Viés:
	Intervalo de Confiança Padrão de Bootstrap
	Intervalo de Confiança Baseado em Percentis Bootstrap
	Intervalo de Confiança Básico de Bootstrap
	Intervalo de Confiança Bootstrap com Correção de Viés Acelerado
	Intervalo de Confiança Bootstrap com Correção de Viés
	Bootstrap no Python

	References

