
Estatística Computacional em Python

Daniel Furtado Ferreira

Data: 04/12/2025

ii

Table of contents

Prefácio 1

1 Introdução ao Python 3
1.1 Introdução aos Comandos e Objetos do Python . 4

1.1.1 Operações Aritméticas Básicas . 5
1.2 Variáveis Booleanas . 7
1.3 Strings . 7
1.4 Listas, Tuplas, Conjuntos e Dicionários . 8

1.4.1 Listas . 8
1.4.2 Tuplas . 14
1.4.3 Conjuntos . 16
1.4.4 Dicionários . 17

1.5 Matrizes e Arranjos . 19
1.6 Arquivos de Dados . 22
1.7 Estruturas de Controle de Programação . 27
1.8 Funções . 30
1.9 Estatística Computacional . 33
1.10 Exercícios . 34

2 Variáveis Aleatórias Uniformes 37
2.1 Números Aleatórios Uniformes . 37
2.2 Números Aleatórios Uniformes no Python . 41
2.3 Exercícios . 42

3 Variáveis Aleatórias Não-Uniformes 45
3.1 Introdução . 45
3.2 Métodos Gerais para Gerar Realizações de Variáveis Aleatórias 45
3.3 Variáveis Aleatórias de Algumas Distribuições Importantes 49
3.4 Distribuição Binomial . 54
3.5 Rotinas Python para Geração de Realizações de Variáveis Aleatórias 58
3.6 Exercícios . 60

4 Geração de Amostras Aleatórias de Variáveis Multidimensionais 63
4.1 Introdução . 63
4.2 Distribuição Normal Multivariada . 63
4.3 Distribuição Wishart e Wishart Invertida . 68
4.4 Distribuição t de Student Multivariada . 72
4.5 Outras Distribuições Multivariadas . 74
4.6 Exercícios . 76

iii

iv TABLE OF CONTENTS

5 Algoritmos para Médias, Variâncias e Covariâncias 77
5.1 Introdução . 77
5.2 Algoritmos Univariados . 77
5.3 Algoritmos para Vetores Médias e Matrizes de Covariâncias 81
5.4 Exercícios . 82

6 Aproximação de Distribuições 85
6.1 Introdução . 85
6.2 Modelos Probabilísticos Discretos . 90
6.3 Modelos Probabilísticos Contínuos . 94
6.4 Quadraturas Gaussianas . 101
6.5 Newton-Raphson . 107
6.6 Funções Pré-Existentes no Python . 109
6.7 Exercícios . 109

7 Conjuntos e Elementos de Análise Combinatória em Python 111
7.1 Introdução a Análise Combinatória no Python . 111
7.2 Permutações e Arranjos . 112
7.3 Contagem . 114
7.4 Conjuntos em Python . 119
7.5 Alguns Problemas de Probabilidade . 122
7.6 Exercícios . 132

8 Métodos Bootstrap em Python 133
8.1 Introdução . 133
8.2 Bootstrap Não-Paramétrico . 133
8.3 Estimação . 134

8.3.1 Erro padrão: . 134
8.3.2 Correção de Viés: . 137
8.3.3 Intervalo de Confiança Padrão de Bootstrap . 138
8.3.4 Intervalo de Confiança Baseado em Percentis Bootstrap 140
8.3.5 Intervalo de Confiança Básico de Bootstrap . 142
8.3.6 Intervalo de Confiança Bootstrap com Correção de Viés Acelerado 143
8.3.7 Intervalo de Confiança Bootstrap com Correção de Viés 146
8.3.8 Bootstrap no Python . 146

References 149

Prefácio

O Livro Estatística Computacional em Python é um resumo e adaptação do Livro Estatística Computa-
cional em Java, publicado pela Editora UFLA. Este Livro tem por objetivo primeiro o aprimoramento do
autor em Quarto e, segundo, o aprendizado de Python.

Adaptaremos inicialmente a apostila Estatística Computacional em R para abrigar os códigos em Python.
Posteriormente, ampliaremos o conteúdo desta primeira Edição do Livro.

Para aprender mais sobre Livros do Quarto visite o site https://quarto.org/docs/books.

Nestas notas de aula tivemos a intenção de abordar o tema de estatística computacional que é tão
importante para a comunidade científica e principalmente para os estudantes dos cursos de pós-graduação
em estatística. Podemos afirmar sem medo de errar que a estatística computacional se tornou e é hoje
em dia uma das principais áreas da estatística. Além do mais, os conhecimentos desta área podem ser
e, frequentemente, são utilizados em outras áreas da estatística, da engenharia e da física. A inferência
Bayesiana é um destes exemplos típicos em que geralmente utilizamos uma abordagem computacional.
Quando pensamos nestas notas de aulas tivemos muitas dúvidas do que tratar e como abordar cada tópico
escolhido. Assim, optamos por escrever algo que propiciasse ao leitor ir além de um simples receituário,
mas que, no entanto, não o fizesse perder em um emaranhado de demonstrações. Por outro lado buscamos
apresentar os modelos e os métodos de uma forma bastante abrangente e não restritiva.

Uma outra motivação que nos conduziu e nos encorajou a desenvolver este projeto, foi a nossa experiência
pessoal em pesquisas com a estatística computacional. Também fizemos isso pensando no benefício pessoal,
não podemos negar, que isso nos traria ao entrarmos em contato direto com a vasta publicação existente
neste ramo da estatística. Não temos, todavia, a intenção de estudarmos todos os assuntos e nem mesmo
pretendemos para um determinado tópico esgotar todas as possibilidades. Pelo contrário, esperamos que
estas notas sejam uma introdução a estatística computacional e que sirvam de motivação para que os
alunos dos cursos de graduação em estatística possam se adentrar ainda mais nessa área.

Estas notas são baseadas em um livro que escrevemos sobre a estatística computacional utilizando a
linguagem Java. A adaptação para o Python de algumas das rotinas implementadas neste livro foi uma
tarefa bastante prazerosa e reveladora. Aproveitamos esta oportunidade para desvendar um pouco dos
inúmeros segredos que este poderoso programa possui e descobrir um pouco sobre seu enorme potencial
e também, por que não dizer, de suas fraquezas. Nessa primeira versão não esperamos perfeição, mas
estamos completamente cientes que muitas falhas devem existir e esperamos contar com a colaboração
dos leitores para saná-las. Estamos iniciando a primeira versão não revisada e não ampliada, utilizando
ainda o Quarto e trocando o R para o Python. Essas notas serão constantemente atualizadas na internet.
Esperamos que este manuscrito venha contribuir para o crescimento profissional dos estudantes de nosso
programa de pós-graduação em Estatística e Experimentação Agropecuária, além de estudantes de outros
programas da UFLA ou de outras instituições. Dessa forma nosso objetivo terá sido atingido.

1

2 Prefácio

Chapter 1

Introdução ao Python

O programa Python foi escolhido para ministrar este curso por uma série de razões. Além de ser um
programa livre, no sentido de possuir livre distribuição e código fonte aberto, pode ser utilizado nas
plataformas Windows e Linux. Além do mais, o Python possui grande versatilidade no sentido de possuir
inúmeros pacotes já prontos e nos possibilitar criar novas rotinas e funções. O PyPi é o repositório oficial
do Python onde todos os pacotes são armazenados. Você pode pensar nele como um Github para os
pacotes do Python. O Python foi criado pelo holandês Guido van Rossum para ser uma linguagem de
programação simples e legível, além de ser muito produtiva. O Python evoluiu e se tornou em uma
linguagem muito atrativa e uma das principais escolhas para aplicações de desenvolvimento web, análise
de dados e inteligência artificial, entre outras. Por ser genuinamente um programa orientado por objeto
nos possibilita programar com muita eficiência e versatilidade, embora apresente algumas diferenças em
sua implementação em relação a outras linguagens orientadas por objetos. Outro aspecto que é bastante
atrativo no Python refere-se ao fato de o mesmo receber contribuições de pesquisadores de todo o mundo
na forma de pacotes. Essa é uma característica que faz com que haja grande desenvolvimento do programa
em relativamente curtos espaços de tempo e que nos possibilita encontrar soluções para quase todos os
problemas com os quais nos deparamos em situações reais. Para os problemas que não conseguimos
encontrar soluções, o ambiente de programação Python nos possibilita criar nossas próprias soluções.

Nestas notas de aulas pretendemos apresentar os conceitos básicos da estatística computacional de uma
forma bastante simples. Inicialmente obteremos nossas próprias soluções para um determinado método ou
técnica e em um segundo momento mostraremos que podemos ter a mesma solução pronta do Python
quando esta estiver disponível. Particularmente neste capítulo vamos apresentar algumas características
do ambiente e da linguagem para implementarmos nossas soluções. Nosso curso não pretende dar soluções
avançadas e de eficiência máxima para os problemas que abordaremos, mas propiciar aos alunos um
primeiro contato com a linguagem Python e com os problemas básicos da estatística computacional.

Alguns esforços iniciais são necessários até que consigamos obter algum benefício. Não temos a intenção
de apresentar neste curso os recursos do Python para análises de modelos lineares de posto completo ou
incompleto, de modelos não-lineares, de modelos lineares generalizados ou de gráficos. Eventualmente
poderemos utilizar algumas destas funções como um passo intermediário da solução do problema que
estaremos focando. Este material será construído com uma breve e simplificada abordagem teórica do
tópico e associará exemplificações práticas dos recursos de programação Python para resolver algum
problema formulado, em casos particulares da teoria estudada.

Este material é apenas uma primeira versão que deverá ter muitos defeitos. Assim, o leitor que encontrá-los
ou tiver uma melhor solução para o problema poderá contribuir enviando um e-mail para danielff@ufla.br.

Visite minha homepage https://des.ufla.br/~danielff/.

3

mailto:danielff@ufla.br
https://des.ufla.br/~danielff/

4 CHAPTER 1. INTRODUÇÃO AO PYTHON

1.1 Introdução aos Comandos e Objetos do Python
No Python os objetos podem ser de diferentes tipos ou estruturas, tais como os números (int, float e
complexos), boolean, string, list, tuple, set, dictionary, functions (objeto que encapsula códigos),
dataframes e muitos outros. Vamos descrever de forma sucinta e gradativa alguns destes objetos e
comandos básicos do Python.

As instruções do Python podem ser escritas em um editor de texto e digitadas no terminal do programa.
Para usarmos o Python, inicialmente instalamos uma distribuição do Programa. Recomendamos a versão
atual (no momento do lançamento do livro) que pode ser baixada no site https://www.python.org/ do
link https://www.python.org/ftp/python/3.13.0/python-3.13.0-amd64.exe. Para digitarmos os códigos,
recomendamos que seja baixado o program livre Positron no site https://posit.co/ usando o link https:
//github.com/posit-dev/positron/releases/download/2024.11.0-140/Positron-2024.11.0-140-Setup.exe.

Veja um print do Positron:

Figure 1.1: Positron: para códigos em Python ou R

Uma vez instalado, podemos digitar os códigos e com Ctrl Enter executamos os códigos linha por linha
ou um bloco de linhas marcadas. É importante instalarmos algumas bibliotecas básicas, caso elas já não
estejam instaladas. A seguir, temos um código Python para esse propósito.
pip install numpy
pip install sympy
pip install PIL

https://www.python.org/
https://www.python.org/ftp/python/3.13.0/python-3.13.0-amd64.exe
https://posit.co/
https://github.com/posit-dev/positron/releases/download/2024.11.0-140/Positron-2024.11.0-140-Setup.exe
https://github.com/posit-dev/positron/releases/download/2024.11.0-140/Positron-2024.11.0-140-Setup.exe

1.1. INTRODUÇÃO AOS COMANDOS E OBJETOS DO PYTHON 5

pip install jupyter
pip install matplotlib

Em seguida devemos importar as libraries que precisarmos. No script a seguir consideramos a importação
de todas as libraries. A library math não precisa ser instalada, pois já vem com as distribuições do Python.
import math
import numpy
import sympy
import PIL
import jupyter
import matplotlib

1.1.1 Operações Aritméticas Básicas
Podemos usar o Python como uma calculadora, temos o seguinte programa, em que cada linha física do
editor tem um comando Python específico. Podemos separar em uma mesma linha vários comandos com
ponto e vírgula.
Programa ilustrativo de operações elementares
em Python
1 + 2 + 3 # soma dos 3 primeiros inteiros
3**10 - 1 + 8
6 / 5 + 0.5**4

6

59056

1.2625

Podemos observar que o símbolo # é usado para inserirmos comentários no código Python e o operador /
faz divisão usando operadores reais. Para divisão de inteiros, podemos usar //, assim, 6 // 5 retorna 1
e 6 / 5 retorna 1,2. O resto da divisão por inteiro é obtido pelo operador %. Assim, 6 % 5 retorna 1.
Temos também que o operador ** é a função potência, ou seja, por exemplo, 310 é 3**10 em Python.

O Python também pode realizar operações com números complexos, que no caso, são representados por
a + bj, em que a é a parte real do número e bj, a parte imaginária, sendo j =

√
−1. O j é representado

por i nos livros de matemática e de outras áreas. O programa a seguir ilustra uma operação com números
complexos dada por (6 − 4i)2. Assim, temos
(6-4j)**2

(20-48j)

Apresentamos a seguir um script que faz uso da library math, cujo primeiro comando foi para importá-la,
o penúltimo para obter o valor de π e o último comando calculou

√
2. Também fizemos mais uma operação

com números complexos.
import math
2 + 4 + 5.6
2 / 3 - 4
(3-4j)*(3+4j)
math.pi
math.sqrt(2)

11.6

6 CHAPTER 1. INTRODUÇÃO AO PYTHON

-3.3333333333333335

(25+0j)

3.141592653589793

1.4142135623730951

As bibliotecas numpy e sympy são para diversos cálculos matemáticos, sendo que a última efetua cálculos
simbólicos.
import sympy
import numpy
numpy.set_printoptions(legacy='1.25')
sympy.sin(sympy.pi/5)
numpy.sin(numpy.pi/5)
type(1.5 + 2.1j) # tipo do objeto√

5
8 −

√
5

8
0.5877852522924731

complex

Podemos realizar uma operação matemática básica como algumas das anteriormente apresentadas ou até
mesmo, mais complexa e armazenar o valor em uma variável, digamos x. Essa variável pode ser usada
para outras operações matemáticas e até simbólicas, se usarmo o sympy. Veja Knuth [1984] para discussão
sobre programação simbólica. O script a seguir ilustra alguns casos deste procedimento.
x = sympy.symbols('y')
z = (1+x**2)**2
sympy.simplify(z)
y = 2.3 + 6.7**2
r = y**2 + 1 / 2**3
print('r =', r, 'y = ', y, 'e', 'z =', z)(
y2 + 1

)2

r = 2227.0211 y = 47.19 e z = (y**2 + 1)**2

Assim, atribuímos dados às variáveis Python. O Python diferencia maiúsculas de minúsculas e nomes
como X e x são diferentes. No Python as variáveis são ponteiros (pointers). Comandos como x = 2 cria um
objeto x e atribuí (armazena) o valor 2 nele em outras linguagens, mas no Python, há um objeto inteiro 2
e x é um ponteiro, apontando para ele. Veja as consequências disso a seguir, sendo que o comando \n
realiza uma quebra de linha. Não há maiores implicações em objetos escalares como este, mas quando se
trata, por exemplo, de listas, nosso próximo objeto, a questão já é bem diferente.
x = z = b = 1
b = 7
print('x is pointing to', x,

'\nz is pointing to', z, '\nb is pointing to', b)

x is pointing to 1
z is pointing to 1
b is pointing to 7

Para lidarmos com funções de números complexos a library cmath deve ser importada e as funções
trigonométricas de números complexos podem ser usadas com base nesta biblioteca e não na library math,

1.2. VARIÁVEIS BOOLEANAS 7

que é designada para números reais (float). Veja o script ilustrativo a seguir.
import cmath
(cmath.cos(0.1 - 0.4j) + cmath.sin(0.2 + 0.6j))**2.5

(1.0143106793360148+2.4164569923716543j)

1.2 Variáveis Booleanas
Variáveis booleanas em Python recebem os valores True e False apenas. Várias operações de comparações
como ==, >=, <=, & (and), | (or) e ! (negação - not) podem ser usadas para este tipo de objeto, as
variáveis booleanas. Veja um simples exemplo disso. Posteriormente, voltaremos a falar destes operadores
de variáveis booleanas.
x = True
print('x = ',x)
y = False
print('y = ',y)
print(x != y) # ou
z = not(y)
print(x == z)

x = True
y = False
True
True

1.3 Strings
As strings (variáveis texto) são um importante tipo de objeto Python. Uma vez que temos um objeto
definido, os métodos e funções estão disponíveis para serem usados. As strings são denotadas por str em
Python. Veja alguns exemplos, em que as strings foram atribuídas ou não a objetos (variáveis).
print('Esta é uma string')
mensagem = 'Universidade Federal '
print(type(mensagem))
print(mensagem)
UFLA = mensagem + 'de Lavras, MG.'
print(UFLA)

Esta é uma string
<class 'str'>
Universidade Federal
Universidade Federal de Lavras, MG.

Alguns métodos que podemos usar com as strings são ilustrados a seguir, entre muitos outros, mostrando
o poder da linguagem orientada por objetos.
UFLA.capitalize()
UFLA.lower()
UFLA.upper()
UFLA

'Universidade federal de lavras, mg.'

8 CHAPTER 1. INTRODUÇÃO AO PYTHON

'universidade federal de lavras, mg.'

'UNIVERSIDADE FEDERAL DE LAVRAS, MG.'

'Universidade Federal de Lavras, MG.'

Estes métodos atuam no objeto, mas, como ficou claro no exemplo anterior, não mudam o conteúdo
do objeto. Podemos realizar operações com strings, como ilustrado a seguir. O método str.format
possibilita formatar strings, como, por exemplo, incluir substrings nos campos marcados com {}.
UFLA * 2
nome = 'Nome: {}, Sobrenome: {}'
nome.format('Daniel', 'Furtado Ferreira')

'Universidade Federal de Lavras, MG.Universidade Federal de Lavras, MG.'

'Nome: Daniel, Sobrenome: Furtado Ferreira'

Podemos usar o Python para interagir com o usuário, solicitando a entrada de dados (strings no caso)
com o comando input. Veja os exemplos a seguir.
nome = input('entre com seu primeiro nome: ')
print(nome + ' foi aprovado!')
x = int(input('entre com um valor inteiro: '))

transforma o str em inteiro: int
x # se o número de entrada não for int, resulta em erro

Se o usuário entrar com Daniel, o resultado será Daniel foi aprovado!. Esta versão de Markdown ainda
não suporta interatividade com o usuário. Portanto, o comando input não foi avaliado na saída deste
script. No segundo comando, se o usuário entrar com um número não inteiro, haverá uma mensagem de
erro do Python. Existem opções para lidar com erros deste tipo e de outras causas também.

1.4 Listas, Tuplas, Conjuntos e Dicionários
Vamos abordar cada um destes objetos separadamente. Vamos começar pelas listas.

1.4.1 Listas
As listas, lists são os primeiros blocos de construção para lidarmos como manipulação de dados. As
listas são vetores cujo primeiro elemento inicia-se no 0, mas cujos elementos de cada célula pode ser
diferentes tipos mistos, desde inteiros, booleanos, reais, complexos, strings, caracteres, conjuntos, tuplas
e outras listas. As listas fazem parte do quarteto list, tuple, set e dictionary. A biblioteca numpy
fornece ferramentas adicionais para lidarmos com grande coleções de dados.
x = [1, 2, 3, 4]
x
y = [1, 'Estat', 3.5, 4+5j]
y
type(x)
type(y)
y[3]

[1, 2, 3, 4]

[1, 'Estat', 3.5, (4+5j)]

list

1.4. LISTAS, TUPLAS, CONJUNTOS E DICIONÁRIOS 9

list

(4+5j)

A variável x é uma lista de inteiros com 4 elementos, que são indexados por 0, 1, 2, 3. Assim, x[1] aponta
para o valor 2 e x[0] para o valor 1. A variável y também é uma lista com 4 elementos de diferentes tipo,
sendo y[0] um inteiro, y[1] uma string y[2] um float e y[3], um número complexo. Para criar a lista,
simplesmente utilizamos as chaves [], com cada elemento da lista separado por uma vírgula. É possível
criar uma lista com elementos com valores repetidos e eles serão identificados como sendo diferentes, pois
a lista respeita as ordens de entradas dos valores e preserva a ordem. Podemos verificar se um elemento
pertence a lista com o comando in, como mostra o script a seguir, entre outros exemplos.
[2, 7] == [7, 2]
[5, 7] == [5, 7, 7]
x
2 in x
7 in x
y
4+5j in y
'Daniel' in y

False

False

[1, 2, 3, 4]

True

False

[1, 'Estat', 3.5, (4+5j)]

True

False

Podemos, como foi feito com as strings realizar algumas operações aritméticas com as listas, como
mostra o exemplo do seguinte script.
x+y
x+[[0,1],'teste',[1,0]]
y*2
y[0] # primeiro elemento da lista
y[-1] # último elemento da lista
numeração -1,-2,-3,-4 para o índice
acessa as posições, 3,2,1,0,
respectivamente da lista y

[1, 2, 3, 4, 1, 'Estat', 3.5, (4+5j)]

[1, 2, 3, 4, [0, 1], 'teste', [1, 0]]

[1, 'Estat', 3.5, (4+5j), 1, 'Estat', 3.5, (4+5j)]

1

(4+5j)

Vejamos agora o problema dos ponteiros, por meio do exemplo do script apresentado na sequência.

10 CHAPTER 1. INTRODUÇÃO AO PYTHON

x = z = b = [1,2,3]
b[1] = 7
print('x is pointing to', x,

'\nz is pointing to', z, '\nb is pointing to', b)
todos os objetos foram alterados e não só b
pois eles apontam para a mesma lista [1,2,3]

x is pointing to [1, 7, 3]
z is pointing to [1, 7, 3]
b is pointing to [1, 7, 3]

Observamos que se x, z e b apontarem para o mesmo objeto, então se alterarmos o valor b[1] de 2 para 7,
então todos os três objetos serão alterados na posição 1, que corresponde ao segundo valor da lista, pois
ela se inicia na posição 0. Entretanto, se em vez de b[1] = 7 tivéssemos usado a atribuição b = [7,9],
então os vetores x e z não seriam alterados, com a nova atribuição do vetor b. Nos exemplos anteriores,
vimos também que os elementos de uma lista são acessados pelo seu índice que varia de 0 a n-1, sendo n o
seu tamanho. Assim, a lista x=[1,2,3,4] tem seus elementos x[0] igual a 1, x[1] igual a 2, x[2]igual a
3 e x[3] igual a 4. Também podemos variar o índice de -1 a -n, sendo que -1 significa a última posição
da lista, ou seja, a posição n-1, -2 corresponde a posição n-2 e assim por diante até -n, que corresponde
a posição 0 da lista.

As listas são objetos e como tais podemos utilizar alguns métodos associados a eles. As listas são mutáveis
e dinâmicas (podemos alterar seus elementos), são ordenadas (cada elemento da lista possui uma ordem
definida na sua criação) e permitem elementos repetidos. Para usarmos um método ou uma função
deveremos considerar a diferença entre eles. Embora todos métodos sejam funções em Python, nem toda
função é um método. As funções recebem os objetos como entradas e não os modifica e os métodos agem
nos objetos. A seguir apresentamos uma relação de alguns métodos ou funções associados às listas:

• sort(): ordena a lista em ordem crescente.

• append(): adiciona um elemento ao final da lista.

• extend: adiciona múltiplos elementos à lista.

• index(): usado para encontrar o índice de um elemento na lista.

• max(list): retorna o valor máximo de uma lista.

• min(list): retorna o valor mínimo de uma lista.

• list(tuple): transforma uma tuple numa lista.

• len(list): retorna o tamanho da lista (número de elementos).

• filter(fun,list): filtra uma lista usando uma função fun Python.

Vamos ilustrar alguns destes métodos com exemplos particulares. Vamos considerar uma lista e aplicarmos
o método sort() para ordenarmos os seus valores. Neste exemplo a seguir, vamos ver a diferença de um
método e de uma função, observando como o método modifica o objeto que o chamou. Neste caso, a
chamada de um método é dada pelo nome da lista (objeto) seguida de um ponto e do nome do método:
lista.met().
x = [7.4, 5.8, 9.3, 3.2]
print('x ori.',x) # objeto x original
x.sort()
print('x mod.: ',x) # objeto x modificado pelo método sort() ordenado

x ori. [7.4, 5.8, 9.3, 3.2]
x mod.: [3.2, 5.8, 7.4, 9.3]

1.4. LISTAS, TUPLAS, CONJUNTOS E DICIONÁRIOS 11

Para o método append temos o seguinte script, que acrescentou o mês de Abril ao final de uma lista
com os três primeiros meses do ano.
mes = ['Janeiro', 'Fevereiro', 'Março']
mes.append('Abril')
print(mes)

['Janeiro', 'Fevereiro', 'Março', 'Abril']

O método extend é aplicado na lista x anterior e acrescenta mais dois elementos ao final da mesma.
x
x.extend([1.6, 11.6])
x
x.sort() # ordena x, pois não estava mais em ordem
x

[3.2, 5.8, 7.4, 9.3]

[3.2, 5.8, 7.4, 9.3, 1.6, 11.6]

[1.6, 3.2, 5.8, 7.4, 9.3, 11.6]

O index() é um método para encontra o índice de um elemento na lista. Se o elemento procurado não
estiver na lista, o Python mostrará uma mensagem de erro.
i = x.index(7.4)
i # lembre-se que a lista começa no 0 e não no 1

3

Já as funções len, max() e min() atuam no objeto, passado como entrada da função, mas não o modificam.
Veja o exemplo na lista x dos exemplos anteriores o efeito destas duas funções.
print('Tamnho de x: ',len(x)) # tamanho da lista x
print('Tamanho de mes: ',len(mes)) # tamanho da lista mes
b = max(x)
a = min(x)
print('a=min(x) = ',a)
print('b=max(x) = ',b)
print('mes: ',mes)
print('x: ',x) # x e mes não modificados

Tamnho de x: 6
Tamanho de mes: 4
a=min(x) = 1.6
b=max(x) = 11.6
mes: ['Janeiro', 'Fevereiro', 'Março', 'Abril']
x: [1.6, 3.2, 5.8, 7.4, 9.3, 11.6]

Para ilustrar a uso da função filter() vamos considerar uma função que retorna True ou False para
uma certa condição de interesse. Por exemplo, se quiséssemos saber quais números dos seis elementos da
lista x possui resto da divisão por 2 menor que 1,5. Esse resultado é obtido com a comparação a % 2 <=
1.5, que irá retornar verdadeiro ou falso para o número representado por a. Só que devemos fazer isso
para todos os elementos da lista x ou de outra lista qualquer. Devemos criar uma função para receber
cada elemento da lista e verificar a condição, retornando True ou False e passar pela função filter()
para realizar a iteração nos elementos da lista x ou na lista de interesse. Vamos criar um primeira função

12 CHAPTER 1. INTRODUÇÃO AO PYTHON

no exemplo a seguir e em seguida aplicar a função filter(). O tipo de objeto retornado desta função é
filter, logo, tem de ser transformado em lista antes de imprimir.
def resto(a):

if ((a % 2) <= 1.5):
return True

else:
return False

aplicar a função filter
x_filtrado = filter(resto, x)
print('x filtrado: ',list(x_filtrado))
print('x original: ',x)

x filtrado: [3.2, 7.4, 9.3]
x original: [1.6, 3.2, 5.8, 7.4, 9.3, 11.6]

Podemos usar a função list(objeto) para construir uma lista a partir deste objeto, como ocorreu com
o objeto x_filtrado do script anterior. Então a função list() é um construtor de listas. Observe
que o operador % retorna o resto da divisão por inteiro, que no caso, foi por 2. A função resto retorna
verdadeiro ou falso, de acordo com a condição do resto da divisão de a por 2. Para definir uma função
necessariamente usamos o comando def seguido pelo nome da função (resto) com o argumento (a).
Depois vem o corpo da função, que deve ter indentação obrigatória. Não há separação com {} ou [] ou
outros caracteres para separar o corpo da função. Esta separação é feita apenas com uso das indentações
apropriadas. Falaremos posteriormente de função com mais detalhes.

Podemos aproveitar algumas funções prontas das listas para calcularmos algumas quantidades de interesse,
como, por exemplo, a soma dos seus elementos. Para isso, poderíamos usar uma estrutura de repetição,
como o for que veremos posteriormente e na medida que o loop se adianta, vamos atualizando a soma.
Porém podemos usar a função sum(). Um loop for é executado como bytecode Python interpretado,
enquanto a função sum() é escrita puramente na linguagem C, portanto, bem mais rápida e eficiente.
Veja o código a seguir para ilustrarmos a soma de todos os valores do vetor x. Falaremos das estruturas
condicionais e de repetições posteriormente.
soma = sum(x)
print('Soma: ',soma)
média
print('Média: ',soma / len(x))

Soma: 38.9
Média: 6.483333333333333

Outros métodos como o count() (conta o número de ocorrências de um dado valor), reverse() (ordena
a lista em ordem reversa a ordem original), clear() (limpa todos os dados da lista), copy() (copia todos
os dados da lista), insert() (insere um elemento em uma posição específica da lista) e pop() (remove
um elemento em uma posição específica) como apresentado no script a seguir.
L = [1, 2, 3, 5, 7, 2, 4.5]
print('Quantos 2: ',L.count(2))
print('Qantos 2.1: ',L.count(2.1))
L1 = L.copy()
L.reverse()
print('L Reverso: ',L)
L.clear()
print('L Vazio: ',L)
print('L1: ',L1)

1.4. LISTAS, TUPLAS, CONJUNTOS E DICIONÁRIOS 13

L1.insert(1, 3) # insere o valor 3 na posição 1
print('L1 com + 3 na pos. 1: ',L1)
L1.pop(1) # retira o elemento 3 da posição 1
print('L1 sem o elemento da pos. 1 (3): ',L1)

Quantos 2: 2
Qantos 2.1: 0
L Reverso: [4.5, 2, 7, 5, 3, 2, 1]
L Vazio: []
L1: [1, 2, 3, 5, 7, 2, 4.5]
L1 com + 3 na pos. 1: [1, 3, 2, 3, 5, 7, 2, 4.5]

3

L1 sem o elemento da pos. 1 (3): [1, 2, 3, 5, 7, 2, 4.5]

Podemos construir uma matriz, haja vista que Python não possui um objeto matricial, usando uma lista.
Se criarmos uma lista de n componentes, com cada um dos componentes tendo m componentes, teremos
uma matriz n × m. Vejamos no script a seguir a construção da seguinte matriz:

A =

 1 4
2 5
3 6

 . (1.1)

O script correspondente a matriz definida em (Equation 1.1) é:
A = [[1,4],[2,5],[3,6]]
print('A = ',A)

A = [[1, 4], [2, 5], [3, 6]]

Vamos apresentar também alguns detalhes extras para acessarmos os valores de uma lista. Podemos
acessar o valor de uma lista x indicando a posição do elemento que queremos acessar da seguinte forma:
x[i], em que i representa um valor inteiro entre 0 e len(x)-1, digamos n-1. Para acessarmos um
subconjunto de uma lista L de tamanho n, podemos usar o seguinte comando L[m:s] que irá acessar os
elementos da posição m até a posição s-1 e não s. Se os índices são negativos, então a lista será acessada
de trás para frente, sendo que -1 corresponde a posição n-1, -2 a posição n-2 e assim sucessivamente até
-n, que corresponde a posição 0. Veja alguns exemplos no script a seguir.
L = [1, 2, 3, 4, 5, 6, 7]
L

[1, 2, 3, 4, 5, 6, 7]

Acessando posições em particulares, para impressão ou para atribuição:
L[0]
L[1] = 8
L

1

[1, 8, 3, 4, 5, 6, 7]

Acessando, posições com os índices negativos.
L[-1] # posição n-1
L[-len(L)] # posição 0

14 CHAPTER 1. INTRODUÇÃO AO PYTHON

7

1

Para blocos de elementos temos que o comando L{m:s:r] acessa os elementos nas posições m, m+1+r,
m+1+2r, ... até a (s-1)-ésima posição ou até a posição mais próxima de s-1 possível. Muito cuidado
deve ser tomado, pois o limite, superior não indica onde o subconjunto termina entre os índices válidos de
uma lista e sim,que ela termina na posição destacada subtraída de 1.
L[1:4]
L[1:23] # passa do limite len(L)
L[0:5:2]
L[-1:-8:-1]
L[4:]
L[:6]

[8, 3, 4]

[8, 3, 4, 5, 6, 7]

[1, 3, 5]

[7, 6, 5, 4, 3, 8, 1]

[5, 6, 7]

[1, 8, 3, 4, 5, 6]

Se omitirmos os limites inferior ou superior da sequência, então a lista selecionada será iniciada no índice
0 (valor inicial) ou terminará no último índice (valor final da lista), como nos dois últimos exemplos
apresentados.

1.4.2 Tuplas
As tuplas são objetos Python muito parecidos com as listas. Vários métodos e funções que se aplicam
às listas também se aplicam às tuplas. Ao contrário das listas, as tuplas são objetos imutáveis, ou seja,
uma vez criadas elas não podem ser modificadas. Assim, se criarmos uma tupla por t = (1,2,3) não
poderemos atribuir valor, por exemplo, deste jeito t[1] = 9. Elas podem conter mais de um valor idêntico
e são ordenadas, como as listas. A forma de criar a tupla em relação à lista é o uso dos parênteses no
lugar dos colchetes.
t = (1, 2, 'DFF', 3)
'DFF' in t
t[2]
t[0]
t[:3]
len(t)

True

'DFF'

1

(1, 2, 'DFF')

4

1.4. LISTAS, TUPLAS, CONJUNTOS E DICIONÁRIOS 15

Os métodos count() e index podem ser usados nas tuplas, como ilustrado a seguir. O método index()
tem a seguinte sintaxe, sendo que os dois últimos argumentos são opcionais: tuple.index(element,
start, end).
t.count(1) # número de ocorrência de 1
t.index('DFF') # índice da posição de 'DFF'

1

2

A tupla pode ter qualquer tipo como sendo seus elementos, incluindo uma tupla ou uma lista.
t1 = ((1,2),'r', [2,3,4])
t1
print('Componente lista da tupla ',t1[2])
print('Elemento 0 do componente lista da tupla ',t1[2][0])
t1[2].append(5)
print('Modificando o componente lista da tupla ',t1)
t2 = [1,2,3]
print('Soma de t2: ',sum(t2))

((1, 2), 'r', [2, 3, 4])

Componente lista da tupla [2, 3, 4]
Elemento 0 do componente lista da tupla 2
Modificando o componente lista da tupla ((1, 2), 'r', [2, 3, 4, 5])
Soma de t2: 6

A questão é: por que devemos usar tuplas, se elas não podem ser modificadas? A resposta para isso vem
do fato de que a manipulação de dados via tuplas que são imutáveis é muito mais rápida do que nas listas.
Apesar da tupla apontar para a mesma identificação da memória, fomos capazes de modificar um de seus
elementos, que era a lista na sua segunda posição. Isso não mudou a identificação na memória para a qual
a tupla t1 apontava.

Existem muitos métodos ou funções que funcionam com as tuplas como o len(t) e o count() como
ilustrado a seguir.
t = (1,1,2,3,3,3,4,5)
print('Número de 3: ',t.count(3))
print('Tamanho de t: ',len(t))

Número de 3: 3
Tamanho de t: 8

A função any(t) retorna True se há algum item True na tupla e retorna False, caso contrário. Neste caso,
a tupla ou qualquer outro tipo apropriado poderá ter elementos 0 e 1 ou booleanos. Pode ser aplicada nas
listas, conjuntos e nos dicionários.
t = (True, False, False,False,True)
any(t)

True

Podemos usar ainda as funções min(), max(), sum() e sorted(), como ilustrado a seguir. A função
sorted() ordena a tupla e retorna uma lista ordenada como resultado. Veja que o método lista.sort()
altera o objeto lista e não pode ser aplicado na tupla, pelo fato de a tupla ser imutável.

16 CHAPTER 1. INTRODUÇÃO AO PYTHON

t = (2.3,4.5,1.2,1.1,9.7,5.3)
print('Min.: ',min(t))
print('Max.: ',max(t))
print('Soma: ',sum(t))
print('T ordenado: ',sorted(t))
print('T original: ',t)

Min.: 1.1
Max.: 9.7
Soma: 24.099999999999998
T ordenado: [1.1, 1.2, 2.3, 4.5, 5.3, 9.7]
T original: (2.3, 4.5, 1.2, 1.1, 9.7, 5.3)

1.4.3 Conjuntos
Os conjuntos set em Python tem uma conotação muito próxima com a definição de conjuntos da
matemática. Esses são conjuntos que a ordem ou duplicação de seus elementos não mudam o conjunto.
Assim, são imutáveis, não ordenados e não pode ter mais de um elemento idêntico em suas ocorrências.
Podemos usar o construtor (função) set() para criar um conjunto ou usarmos as chaves{} para digitar
seus elementos separados por vírgula.
phi = set()
print('Conjunto vazio: ', phi)
precisa ser uma lista ou tupla de argumento
A = set(['A','D','B','C','E'])
print('A: ',A)
B = {1,2,3.4,5,6,6}
print('Elemento "A" pertence a A: ','A' in A)
print('B: ',B) # repare que o elemento

#repetido 6 aparece 1 vez apenas
print(B[0])

Conjunto vazio: set()
A: {'C', 'D', 'A', 'B', 'E'}
Elemento "A" pertence a A: True
B: {1, 2, 3.4, 5, 6}

TypeError: 'set' object is not subscriptable

TypeError Traceback (most recent call last)
Cell In[35], line 10

8 print('B: ',B) # repare que o elemento
9 #repetido 6 aparece 1 vez apenas

---> 10 print(B[0])
TypeError: 'set' object is not subscriptable

Não podemos acessar um elemento de um conjunto por B[0], por exemplo, o que ocasiona um erro, como
pode ser visto no resultado do script anterior. A ordem não é importante. Vejamos a comparação do
conjunto A anterior com o novo conjunto C criado a seguir.
C = set(['A','B','C','D','E'])
print('C: ',C)
print('A: ',A)
print('A=C: ',A == C)

1.4. LISTAS, TUPLAS, CONJUNTOS E DICIONÁRIOS 17

C: {'C', 'D', 'A', 'B', 'E'}
A: {'C', 'D', 'A', 'B', 'E'}
A=C: True

Algumas operações matemáticas com conjuntos estão disponíveis em Python, como união, interseção,
diferença (Ac ∩ B) e diferença simétrica ((Ac ∩ B) ∪ (A ∩ Bc)), como ilustrados no exemplo a seguir.
A = {1,2,3,4,5,6}
B = {4,5,7,8,9,10}
print('A: ',A)
print('B: ',B)
print('A U B: ',A.union(B))
print('AB: ',A.intersection(B))
print('A-B: ',A.difference(B)) # esta em A, mas não em B
print('B-A: ',B.difference(A)) # está em B, mas não em A
print('Dif. simétrica: ',A.symmetric_difference(B)) # está só em A ou só em B
print('AB: ',A & B) # intersecção
print('A U B: ',A | B) # união
print('A-B: ',A - B) # diferença
print('B-A: ',B - A) # diferença
print('dif. Sim.: ',AˆB) # diferença simétrica

A: {1, 2, 3, 4, 5, 6}
B: {4, 5, 7, 8, 9, 10}
A U B: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
AB: {4, 5}
A-B: {1, 2, 3, 6}
B-A: {8, 9, 10, 7}
Dif. simétrica: {1, 2, 3, 6, 7, 8, 9, 10}
AB: {4, 5}
A U B: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
A-B: {1, 2, 3, 6}
B-A: {8, 9, 10, 7}
dif. Sim.: {1, 2, 3, 6, 7, 8, 9, 10}

1.4.4 Dicionários
Os dicionários dictionary() são objetos mutáveis e iteráveis. Os seus elementos vem sempre aos pares,
sendo o primeiro valor uma chave e o segundo elemento, o valor da chave. Tanto a chave quanto o seu
valor são objetos Python. A chave é imutável, mas seus valores associados são objetos mutáveis ou não.
D = {1: [1,2,3.4,5], 2: 3.7, 3: {1,2,3}}
D[1]
D[2]
type(D[3])
type(D[1])

[1, 2, 3.4, 5]

3.7

set

list

Temos um dicionário, com as chaves 1, 2 e 3. Para a chave 1 temos uma lista como seu valor, para a chave

18 CHAPTER 1. INTRODUÇÃO AO PYTHON

2, temos um valor float e para a chave 3, criamos um objeto do tipo conjunto. A seguir, acrescentamos
uma chave, nomeada 4 com um valor booleano associado. O método keys() recupera as chaves do objeto
dicionário D, transforma numa lista e imprime a lista e seu primeiro elemento C[0].
D[4] = True
print(D)
C = list(D.keys())
print(C)
C[0]

{1: [1, 2, 3.4, 5], 2: 3.7, 3: {1, 2, 3}, 4: True}
[1, 2, 3, 4]

1

Do mesmo modo, podemos obter os valores das chaves facilmente, como ilustrado a seguir. Posteriormente,
veremos como poderemos utilizar uma estrutura de repetição for para percorrer os elementos do dicionário
e armazenar os valores em uma lista ou processá-los um a um.
print('D: ',D)
print('Valores de D: ',D.values())
print('Lista dos valores de D: ',list(D.values()))
print('D[C[0]]: ',D[C[0]]) # acessando o valor com chave 1, C[0]
print('C[0] pertence a D: ',C[0] in D) # verificando se chave 1 pertence a D
print('5 pertence a D:',5 in D) # verificar se a chave 5 pertence a D

D: {1: [1, 2, 3.4, 5], 2: 3.7, 3: {1, 2, 3}, 4: True}
Valores de D: dict_values([[1, 2, 3.4, 5], 3.7, {1, 2, 3}, True])
Lista dos valores de D: [[1, 2, 3.4, 5], 3.7, {1, 2, 3}, True]
D[C[0]]: [1, 2, 3.4, 5]
C[0] pertence a D: True
5 pertence a D: False

Podemos deletar o conteúdo de uma chave, usando a função del ou usando o método pop(). Podemos
atualizar o dicionário, criando novas chaves e valores, com o método update.
del D[3] # elimina a chave 3
D
D.pop(4) # elimina a chave 4
D
D.update({5: 'sou novo', 6:'eu também'})
D

{1: [1, 2, 3.4, 5], 2: 3.7, 4: True}

True

{1: [1, 2, 3.4, 5], 2: 3.7}

{1: [1, 2, 3.4, 5], 2: 3.7, 5: 'sou novo', 6: 'eu também'}

Podemos criar um objeto dicionário, criando duas tuplas, digamos c e v, com as chaves e com os valores
das chaves (de mesmo tamanho). Em seguida emparelhamos os elementos com o comando zip(c, v).
Finalmente, usamos a função dict para criar o dicionário dos valores emparelhados.
c = (1,2,3,4) # chaves
v = ([1,2],True,4.5,('r','s'))
y = dict(zip(c,v))

1.5. MATRIZES E ARRANJOS 19

y
y.get(5,'Chave não existe')
get() não gera erro em chave inexistente
mas, y[5] geraria erro
y.get(1)
y[1]# como 1 existe, é equivalente ao get()

{1: [1, 2], 2: True, 3: 4.5, 4: ('r', 's')}

'Chave não existe'

[1, 2]

[1, 2]

Assim, tendo acesso a um valor da lista, podemos usar os métodos e funções apropriadas para lidarmos com
eles. Mais detalhes destes objetos, aparecerão oportunamente, quando avançarmos em mais características
da programação em Python.

1.5 Matrizes e Arranjos
As matrizes em Python, como dissemos e mostramos anteriormente, podem ser criadas pelas listas. Assim,
vamos criar a seguir uma matriz 2 × 2 usando list para ilustrarmos o procedimento de criação. Se a
dimensão for uma só, as listas são arranjos de uma dimensão, conhecidas por vetores.
A = [[4,1],[1,1]] # matriz 2 x 2
print('A = ',A)
A[1][1] # retorna o valor A[2,2]
A[1][1] = 2 # altera o seu valor
A

A = [[4, 1], [1, 1]]

1

[[4, 1], [1, 2]]

Para lidarmos com funções vetoriais (arrays) ou matriciais, podemos, entre outras possibilidades usar a
biblioteca (pacote) numpy. Nosso primeiro passo é importar o pacote numpy com o apelido, np, que é o
mais usado, para facilitar a chamada de seus métodos e funções. Isso só pode ser feito, se já tivermos
instalado o pacote numpy.
del numpy # eliminar a última importação
import numpy as np

Em seguida, criamos uma matriz com o uso da função array(). Vamos usar nossa lista A anterior, para
fazer isso.
B = np.array(A)
B

array([[4, 1],
[1, 2]])

Podemos criar também a partir de tuplas, em vez de listas, a matriz numpy. Além disso, existem funções
próprias do pacote para criarmos matrizes, como, por exemplo, a matriz de zeros 2 × 4 a seguir. Também
existem funções para criarmos arrays (vetores) unidimensionais, como o método arange() e o linspace().
O primeiro cria um vetor indo de n até o máximo m (inteiros) sem incluí-lo de 1 em 1, ou do mínimo n até

20 CHAPTER 1. INTRODUÇÃO AO PYTHON

o máximo m (excluindo o máximo) de r em r: arange(n,m) ou arange(n,m,r). Já o linspace(n,m,s)
inicia em n, finaliza em m, mas com passo igual a (m - n) / (s - 1).
C = np.zeros((2,4))
print(C)
np.arange(2,7) # vetor com elementos 2,3,..,6
np.arange(2,7,0.5) # de 2 até 7, de 0.5 em 0,5 (exceto o 7)
np.linspace(2,6,6)

[[0. 0. 0. 0.]
[0. 0. 0. 0.]]

array([2, 3, 4, 5, 6])

array([2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. , 6.5])

array([2. , 2.8, 3.6, 4.4, 5.2, 6.])

Vamos ilustrar alguns cálculos simples com vetores.
x = np.arange(2,3,0.2)
y = np.arange(3,6,0.7)
print('', x,'\n', y)
x + y # adição dos vetores
x * y # produto elementwise
y ** x # potenciação elementwise

[2. 2.2 2.4 2.6 2.8]
[3. 3.7 4.4 5.1 5.8]

array([5. , 5.9, 6.8, 7.7, 8.6])

array([6. , 8.14, 10.56, 13.26, 16.24])

array([9. , 17.78458735, 35.01760371, 69.13253113,
137.27719037])

A multiplicação de matrizes por sua vez pode ser feita com a função np.dot, que tem uma versão na
forma de método também, não modificando o objeto que o acionou.
C = np.array([[2,1],[1,2]])
print('B: ',B)
print('C: ',C)
print('BC: ',np.dot(B,C))
print('BC: ',B.dot(C))
print('B original: ',B)

B: [[4 1]
[1 2]]

C: [[2 1]
[1 2]]

BC: [[9 6]
[4 5]]

BC: [[9 6]
[4 5]]

B original: [[4 1]
[1 2]]

1.5. MATRIZES E ARRANJOS 21

As inversas podem ser obtidas com a função np.linalg.inv() e as inversas generalizadas de Moore-
Penrose pelo método numpy.linalg.pinv(). O determinante pode ser obtido por np.linalg.det() e os
autovalores e autovetores (decomposição espectral) por np.linalg.eig(). É importante observar que os
autovalores do np.linalg.eig() não necessariamente estará ordenado do maior para o menor, como é
convencionalmente adotado em diferentes outros programas. Este método é bem geral e pode ser usado
em matrizes reais ou complexas quadradas. Alternativamente, para matrizes simétricas o numpy possui o
método np.linalg.eigh(), que retorna os autovalores em ordem crescente. Veja o exemplo a seguir.
np.linalg.inv(B)
np.linalg.pinv(B) # igual a inversa (posto completo)
np.linalg.det(B)
L, P = np.linalg.eig(B)
print('Autovalores: ',L,'\nAutovetores: ',P)
L1, P1 = np.linalg.eigh(B)
print('Autovalores: ',L1,'\nAutovetores: ',P1)

array([[0.28571429, -0.14285714],
[-0.14285714, 0.57142857]])

array([[0.28571429, -0.14285714],
[-0.14285714, 0.57142857]])

6.999999999999999

Autovalores: [4.41421356 1.58578644]
Autovetores: [[0.92387953 -0.38268343]
[0.38268343 0.92387953]]

Autovalores: [1.58578644 4.41421356]
Autovetores: [[0.38268343 -0.92387953]
[-0.92387953 -0.38268343]]

Também podemos usar a biblioteca scipy com os métodos sp.linalg.eig() e sp.linalg.eigh(), que
fazem exatamente como os seus similares da biblioteca numpy. Para isto devemos importar, depois de
instalada, a biblioteca usando import scipy as sp.

Para matrizes n x m, podemos usar uma decomposição matricial muito útil para a estatística, em métodos
como componentes principais, AMMI, biplot, entre outros. Esse método é chamado de decomposição
do valor singular. Nele obtemos a decomposição de uma matriz A (m x n) da seguinte forma: A =
UΛV⊤, em que o método np.linalg.svd() retorna U uma matriz m × k ortonormal por colunas, V
uma matriz n × k ortonormal por coluna e o vetor correspondente à diagonal de Λ, que é uma matriz
diagonal k × k de elementos reais positivos, se usarmos a opção full_matrices=False. As matrizes U e
V são as matrizes dos vetores singulares e a matriz Λ é a matriz dos valores singulares, sendo k o posto
de A que é k = min(n,m). O script a seguir ilustra a obtenção da decomposição singular de uma matriz
3 × 2.
A = np.array([[1,4],[2,7],[9, 3]])
U,L,Vt = np.linalg.svd(A, full_matrices=False)
print('Vetores singulares à esquerda: ',U,
'\nVetor dos valores singulares: ',L,
'\nVetores singulares à direita (transposto): ',Vt)
len(L) # posto de A
np.diag(L) # constrói a matriz Lambda

Vetores singulares à esquerda: [[-0.30248631 -0.39963983]
[-0.54614812 -0.67137377]
[-0.78116852 0.62413562]]

22 CHAPTER 1. INTRODUÇÃO AO PYTHON

Vetor dos valores singulares: [11.19813546 5.88232625]
Vetores singulares à direita (transposto): [[-0.75238412 -0.65872463]
[0.65872463 -0.75238412]]

2

array([[11.19813546, 0.],
[0. , 5.88232625]])

Para verificarmos que a decomposição realmente é adequada, temos o seguinte script:
print('ULVt: ',np.dot(np.dot(U,np.diag(L)),Vt))
print('ULVt: ',U.dot(np.diag(L)).dot(Vt)) # alternativo
print('ULVt: ',U @ np.diag(L) @ Vt) # alternativo

ULVt: [[1. 4.]
[2. 7.]
[9. 3.]]

ULVt: [[1. 4.]
[2. 7.]
[9. 3.]]

ULVt: [[1. 4.]
[2. 7.]
[9. 3.]]

Muitas outras funções existem no pacote numpy para lidarmos ou operarmos matrizes. Se necessitarmos
de alguma outra função para alguma operação matricial, vamos apresentá-la nestas ocasiões.

1.6 Arquivos de Dados
Usaremos pouco esta estrutura de dados neste material, embora vamos apresentar a biblioteca pandas
para lidarmos com os DataFrames. Iremos apresentar a leitura de um arquivo particular com duas
variáveis X1 e X2, gravado como arquivo texto separado por espaço entre as colunas (variáveis). O caminho
onde este arquivo se encontra em meu computador é: g:/Meu Drive/daniel/Cursos/Estatistica
computacional/Apostila/ e seu nome é dados.txt. Devemos inicialmente instalar a biblioteca pandas
com o comando: pip install pandas. Posteriormente, carregamos o pacote pandas, como apresentado
no script a seguir. Para mudar o diretório, precisamos importar o pacote os e usar os.getcwd() para
obter o diretório de trabalho atual e para alterá-lo os.chdir('[path]').
import pandas as pd
import os
apath = os.getcwd() # caminho do projeto
os.chdir('g:/Meu Drive/daniel/Cursos/Estatistica computacional/Apostila/')
os.getcwd()

'g:\\Meu Drive\\daniel\\Cursos\\Estatistica computacional\\Apostila'

Para lermos um arquivo deste diretório em um objeto DataFrame podemos usar a função
pd.read_csv('dados.txt',r'\s+'), cujo símbolo r'\s+' significa que o arquivo é separado por
espaços, podendo variar o número de espaços entre colunas de registro (linha) para registro, ou seja, se o
número de espaços não está padronizado entre as colunas para as diferentes linhas do arquivo de dados.
dados = pd.read_csv('dados.txt',sep=r'\s+')
dados

1.6. ARQUIVOS DE DADOS 23

X1 X2
0 13.4 14
1 14.6 15
2 13.5 19
3 15.0 23
4 14.6 17
5 14.0 20
6 16.4 21
7 14.8 16
8 15.2 27
9 15.5 34
10 15.2 26
11 16.9 28
12 14.8 24
13 16.2 26
14 14.7 23
15 14.7 9
16 16.5 18
17 15.4 28
18 15.1 17
19 14.2 14

Os DataFrames são estruturas de dados tabular, sendo que cada coluna possui constitui de uma sequência
de valores do mesmo tipo (booleano, float, strings, etc.), em que as diferentes colunas podem ser e
potencialmente são de diferentes tipos. Os DataFrames possuem uma coluna adicional chamada index
que no exemplo anterior, do objeto dados, variou de 0 a 19, pois nosso DataFrame possui 20 linhas e duas
variáveis X1 e X2, que no arquivo dados.txt estavam identificadas na primeira linha física do arquivo que
foi lido pelo método read_csv(). O index mapeia as linhas do DataFrame com os labels mencionados.

Vamos mostrar como construir um DataFrame diretamente a partir de um objeto dict para o construtor
DataFrame() do pandas. Vamos criar um DataFrame de um delineamento inteiramente casualizado, com
2 tratamentos e 3 repetições de cada um, com os respectivas produtividades avaliadas nas 6 parcelas
experimentais.
dic = {'rep': [1,2,3,1,2,3],

'trat': [1,1,1,2,2,2],
'prod': [3.4,2.3,5.6,5.7,6.3,7.1]}

arqd = pd.DataFrame(dic)
arqd

rep trat prod
0 1 1 3.4
1 2 1 2.3
2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1

Podemos acrescentar uma nova coluna em nosso DataFrame, ou eliminarmos uma já existente, criando um
novo DataFrame para receber o resultado, como mostrado a seguir, com a opção columns, para qualquer
ordem das chaves (nomes das colunas).

24 CHAPTER 1. INTRODUÇÃO AO PYTHON

arqd
arqd1 = pd.DataFrame(arqd,columns=['trat','prod'])
arqd1 # selecionando 2 variáveis no DataFrame
arqd['alt'] = [1.5,1.3,1.4,1.2,1.1,1.6] #criando variável altura
arqd

rep trat prod
0 1 1 3.4
1 2 1 2.3
2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1

trat prod
0 1 3.4
1 1 2.3
2 1 5.6
3 2 5.7
4 2 6.3
5 2 7.1

rep trat prod alt
0 1 1 3.4 1.5
1 2 1 2.3 1.3
2 3 1 5.6 1.4
3 1 2 5.7 1.2
4 2 2 6.3 1.1
5 3 2 7.1 1.6

Para acessarmos as chaves (colunas), os índices e os valores do DataFrame podemos usar os seguintes
códigos ilustrativos. Observamos que a instrução arqd.prod para acessar a coluna prod, resulta em erro,
pois prod é uma palavra reservada (produto). Devemos usar a alternativa anterior para esta chave.
arqd.columns
arqd.index
arqd.values
arqd['prod'][0] # produção do índice 0
arqd['prod'] # toda a coluna de produção
arqd.prod # cuidado, pois prod é palavra reservada: erro
arqd.rep

Index(['rep', 'trat', 'prod', 'alt'], dtype='object')

RangeIndex(start=0, stop=6, step=1)

array([[1. , 1. , 3.4, 1.5],
[2. , 1. , 2.3, 1.3],

1.6. ARQUIVOS DE DADOS 25

[3. , 1. , 5.6, 1.4],
[1. , 2. , 5.7, 1.2],
[2. , 2. , 6.3, 1.1],
[3. , 2. , 7.1, 1.6]])

3.4

0 3.4
1 2.3
2 5.6
3 5.7
4 6.3
5 7.1
Name: prod, dtype: float64

<bound method DataFrame.prod of rep trat prod alt
0 1 1 3.4 1.5
1 2 1 2.3 1.3
2 3 1 5.6 1.4
3 1 2 5.7 1.2
4 2 2 6.3 1.1
5 3 2 7.1 1.6>

0 1
1 2
2 3
3 1
4 2
5 3
Name: rep, dtype: int64

Para extrairmos uma linha inteira usamos o método loc do DataFrame associado ao índice da linha
(registro), como ilustrado no script a seguir.
L = arqd.loc[1] # segunda linha do DataFrame
print(L)
L2 = arqd.loc[[0,5]] # as linhas 1 e 6 de arqd
L2 # com os índices 0 e 5

rep 2.0
trat 1.0
prod 2.3
alt 1.3
Name: 1, dtype: float64

rep trat prod alt
0 1 1 3.4 1.5
5 3 2 7.1 1.6

Para selecionar um bloco de registros (linhas) indo de inicio ao fim (excluindo o limite final) usamos
arqd[inicio:fim]. Como ilustrado a seguir, onde extraímos do índice 0 até o índice 3, ou seja, as três
primeiras linhas com os índices 0, 1 e 2 do arqd.

26 CHAPTER 1. INTRODUÇÃO AO PYTHON

arqd[0:3]

rep trat prod alt
0 1 1 3.4 1.5
1 2 1 2.3 1.3
2 3 1 5.6 1.4

Valores perdidos podem fazer parte do DataFrame e neste caso, eles assumem o valor NaN, do inglês not
a number. Podemos deletar uma coluna com o comando del, da seguinte forma.
del arqd['alt']
arqd

rep trat prod
0 1 1 3.4
1 2 1 2.3
2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1

Podemos filtrar impondo condições específicas ao DataFrame. Por exemplo, se estivermos interessado no
DataFrame resultante dos elementos em que a produção é maior ou igual a 5, teremos o seguinte resultado.
O resultado filtrado mostra os registros nas mesmas posições originais e o seu DataFrame original arqd
permanece inalterado.
arqd[arqd['prod'] >= 5.0]
arqd

rep trat prod
2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1

rep trat prod
0 1 1 3.4
1 2 1 2.3
2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1

Para gravarmos um DataFrame podemos escolher o diretório (pasta) e o nome do arquivo e gravarmos em um
arquivo csv (arquivo separado por vírgula) com o comando arqd.to_csv('nome.csv,index=False,header=True)
para não salvar o índice e salvar o cabeçalho. Vamos recuperar em nosso código, o path original com o

1.7. ESTRUTURAS DE CONTROLE DE PROGRAMAÇÃO 27

comando os.chdir(apath), em que apath foi obtido quando iniciamos o assunto sobre DataFrame e
refere-se ao diretório deste projeto. Escolhemos o nome dic.csv para o arquivo. Podemos ler o arquivo
novamente, conforme mostramos nos primeiros passos da abordagem dos DataFrames. Depois de gravado,
repetimos sua leitura e o colocamos no objeto dic, em que devemos atentar para o separador de colunas,
que neste caso é a vírgula.
os.chdir(apath)
arqd.to_csv('dic.csv',index=False,header=True)
dic = pd.read_csv('dic.csv',sep=r',')
dic

rep trat prod
0 1 1 3.4
1 2 1 2.3
2 3 1 5.6
3 1 2 5.7
4 2 2 6.3
5 3 2 7.1

Em futuras edições, mostraremos mais detalhes dos DataFrames. Nos capítulos posteriores, caso venhamos
a precisar de um DataFrame e de algumas de suas propriedades, então iremos adicionar os conteúdos
necessários nesta ocasião. Falaremos agora das estruturas condicionais e as estruturas de repetições.

1.7 Estruturas de Controle de Programação
O Python é um ambiente de programação em que programas contêm os módulos, os módulos contêm
instruções, as instruções contêm comandos e as expressões criam e processam os objetos. Estas instruções
são as atribuições tipo a=b, a chamada de métodos e funções como print(a), if/elif/else para seleção
de ações, o for/else para realizar iterações, o while/else para loops em geral, break e continue para
controle de loops, def para definições de funções, yield para gerador de funções, entre outros. As
instruções são organizadas em expressões em grupos de comandos, que diferentemente de outras linguagens
são organizados pelas indentações (recuo do parágrafo). Assim, o corpo ou grupo de comando de uma
instrução específica, ficará reunida se elas tiverem indentadas em relação a instrução principal e com
o mesmo nível de indentação. Em outra linguagens os grupos de comandos são reunidos pelas chaves:
{grupos de comandos}. O fim de uma linha termina a instrução, que também pode ser finalizada por
um ponto e vírgula. Uma instrução pode continuar em uma nova linha se a linha terminar com o \ ou
com o uso dos parênteses.

O nome das variáveis em Python devem iniciar com underscore ou letra, seguido por números ou letras
ou underscore. O python diferencia as maiúsculas das minúsculas, assim Y é diferente de y. Os nomes
devem evitar as palavras reservadas do Python, como False, None, True, class, and, if, elif, yield, while,
break, global, nor, try, return, break,in, etc. Por convenção, as classes em Python começam com maiúsculo
e os módulos e nomes de variáveis por minúsculo.

As estruturas condicionais, if/elif/else são estruturas em Python para selecionar ações. Esta instrução
pode conter outras instruções do mesmo tipo ou diferentes instruções em seus grupos de comando. O
formato geral é dado por
if condição1:

instruções1
elif condição2: # opcional elifs

instruções2

28 CHAPTER 1. INTRODUÇÃO AO PYTHON

else: # opcional else
instruções3

A instrução elif significa else if e é opcional. Se a condição1 for verificada, é executado o bloco
denominado instruções1, que estão indentados em relação ao if. Caso a condição seja falsa, é testada a
condição2 e se ela for verdadeira, são executados as instruções denotadas por instruções2, que pode ser
uma simples instrução ou várias instruções, indentadas em relação ao elif. Finalmente, se a condição2
for falsa são executadas as instruções3. Cada linha das instruções if, elif ou else são seguidas por
dois pontos. Veja o exemplo simples a seguir.
x = 5
if x > 6:

print('Recebe mais que 6 salários.')
print('Você está entre os 20% mais ricos!')

else:
print('Você recebe 6 salários ou menos.')
print('Você representa 80% da população!')

Você recebe 6 salários ou menos.
Você representa 80% da população!

Para um modelo probabilístico temos o seguinte modelo para a função de distribuição:

FX(x) =

 0 se x < 0
x2 se 0 ≤ x ≤ 1
1 se x > 1.

Para este modelo, temos o seguinte script, no qual decidimos qual parte do programa rodar, conforme os
valores de x são atribuídos.
x = 0.8
if x < 0:

F = 0
elif 0 <= x <= 1:

F = x**2
else:

F = 1
F

0.6400000000000001

As estruturas de repetição do Python são o for e o while/else. Existe ainda um terceiro tipo de
procedimento em Python para realizarmos iterações. A estrutura geral de um código Python para o for é
apresentada no script a seguir.
x = [1,2,3,4,5,6]
for i in x:

instruçoes1
else: # opcional instrução else

instruções2

Os objetos (x) do comando for são os objetos iteradores ou iteráveis, que são aqueles que contêm um
número contáveis de valores. As listas, tuplas, dicionários e conjuntos ão todos objetos iteráveis. Vamos
ilustrar com um simples exemplo a seguir, para calcularmos a soma, o produtório e a média de uma lista
de valores.

1.7. ESTRUTURAS DE CONTROLE DE PROGRAMAÇÃO 29

x = [2.3, 4.1, 1.5, 2.3, 4.7]
soma = 0
prod = 1
n = len(x)
for y in x:

soma = soma + y
prod = prod * y

media = soma / n
print('A soma é: ',soma)
print('O produtório é: ',prod)
print('A média é: ',media)

A soma é: 14.899999999999999
O produtório é: 152.90744999999995
A média é: 2.9799999999999995

Para realizarmos iterações em um dicionário, temos o seguinte exemplo:
D = {1: 1.3, 2: 3.1, 3: 1.7}
for i in D: # iterar nas chaves

print(i, ' e ', D[i])
print('Agora iterando nas chaves e valores:')
for (i, valor) in D.items():

print(i, ' e ', valor) # iterar em chave e valor

1 e 1.3
2 e 3.1
3 e 1.7
Agora iterando nas chaves e valores:
1 e 1.3
2 e 3.1
3 e 1.7

Finalmente, um exemplo em um conjunto:
A = {1.1,2.2,3.4,4.7,5.3}
for i in A:

print('elemento: ',i)

elemento: 1.1
elemento: 2.2
elemento: 3.4
elemento: 4.7
elemento: 5.3

Podemos criar um sequência de valores com o comando range(n) que vai de 0 a n-1. Assim, também
podemos usar o for nessa sequência, como ilustrado no exemplo a seguir.
x = [2.3, 4.1, 1.5, 2.3, 4.7]
soma = 0
n = len(x)
for i in range(n):

soma = soma + x[i]
media = soma / n
print('A soma é: ',soma)

30 CHAPTER 1. INTRODUÇÃO AO PYTHON

print('A média é: ',media)

A soma é: 14.899999999999999
A média é: 2.9799999999999995

O while é uma outra estrutura de repetição, em que o bloco de comandos indentados irão ser executados
até que uma condição seja satisfeita. A estrutura geral é dada a seguir.
while condição:

instruçoes1
else: # opcional instrução else

instruções2

O exemplo a seguir, ilustra o cálculo do total e da média de uma lista.
x = [2.3, 4.1, 1.5, 2.3, 4.7]
soma = 0
n = len(x)
i = 0
while i < n:

soma = soma + x[i]
i = i + 1

media = soma / n
print('A soma é: ',soma)
print('A média é: ',media)

A soma é: 14.899999999999999
A média é: 2.9799999999999995

Podemos usar os comandos break e continue dentro do while (ou do for). O break é usado após uma
segunda condição ser verificada no bloco de comandos do interior da estrutura de repetição e pula a
execução do programa para a primeira linha de instrução após o bloco do loop, ou seja, encerra o loop.
O continue executa a primeira linha testando a condição primária do while ou tomando o próximo valor
do iterador no for, ou seja, vai para o início do loop. Veja o exemplo a seguir.
y = 35 # experimente outro número inteiro > 1
x = y // 2
while x > 1:

if y % x == 0:
print(y, 'tem fator ', x)
break

x = x - 1
else:

print(y,' é primo')

35 tem fator 7

Podemos utilizar a função filter, como já ilustramos anteriormente neste material, para realizarmos
iterações em nosso código. Não daremos mais detalhes disso, por enquanto.

1.8 Funções
As funções em todas as linguagens são uma poderosa ferramenta de programação, que nos permite quebrar
um grande problema em pequenas tarefas (as funções), facilitando assim a resolução do problema como
um todo. Dizemos que é a estratégia de dividir para conquistar. As funções em geral recebem um objeto

1.8. FUNÇÕES 31

e o processa de acordo com as regras definidas em seu bloco de comando. Desta forma a linguagem
ganha grande poder, conveniência e elegância. O aprendizado em escrever funções úteis é uma das muitas
maneiras de fazer com que o uso do Python seja confortável e produtivo. A sintaxe geral de uma função é
dada por:
def nome(arg1, arg2,...,argn):

instruções

As instruções significam um bloco de comandos (indentados) e podem ou não ter o comando return
objeto, que pode acontecer em qualquer parte do bloco de comandos. A função pode não ter este
comando de return, se ela modificar um arquivo apenas gravando um novo resultado ou se imprimir uma
mensagem quando chamada. Os argumentos ou parâmetros são passado para a função e a sua chamada
deve obedecer estritamente a ordem em que eles aparecem, a menos que a chamada seja com chave, ou
seja, do tipo arg1 = 2.3, por exemplo. Neste caso, os argumentos podem ser colocados em qualquer
ordem. Os argumentos de uma função podem conter valores default, ou seja, na declaração do nome
da função podemos ter algo do tipo: def nome(x, theta = 0.5). O argumento theta=0.5 pode ser
omitido na chamada da função, que será atribuído seu valor 0,5 padrão.

Vamos apresentar uma função simples para testar a hipótese H0 : µ = µ0 a partir de uma amostra simples
de uma distribuição normal. Dois argumentos serão utilizados: o vetor (lista) de dados x de tamanho n e
o valor real hipotético µ0. A função calculará o valor da estatística tc do teste por:

tc =X̄ − µ0
S√
n

. (1.2)

A função resultante, em Python, é apresentada a seguir. Neste exemplo uma amostra de tamanho n = 8 foi
utilizada para obter o valor da estatística para testar a hipótese H0 : µ = 3,0 (se a amostra era proveniente
do povo na’vu). Podemos observar que o resultado final da função é igual ao do último comando executado,
ou seja o valor da estatística e do valor-p, por meio de um objeto do tipo dicionário. Esta função utiliza no
seu escopo três funções do Python (funções básicas do numpy), ainda não apresentadas. As duas primeiras,
var() e mean() retornam a variância e a média do vetor utilizado como argumento, respectivamente, e a
terceira, pt(), retorna a probabilidade acumulada da distribuição t de Student para o primeiro argumento
da função com ν graus de liberdade, que é o seu segundo argumento.
import scipy as sp # para calcular probabilidade da t
def t_test(x, mu0):

n = len(x)
s2 = np.var(x,ddof=1) # ddof=1, divisor n-1 para s2
xb = np.mean(x)
t = {'tc':0,'p.val':0}
t['tc'] = (xb-mu0) / (s2 / n)**0.5
t['p.val'] = 2*(1-sp.stats.t.cdf(abs(t['tc']),n-1))
return t

y = [1.76,1.81,1.74,1.71,1.79,1.75]
t = t_test(y, 3.0) # altura de avatares
print('tc = ',t['tc'])
print('p.val = ',t['p.val'])

tc = -84.89699641330068
p.val = 4.297311617662558e-09

Podemos reescrever esta função para colocarmos um valor default para o argumento mu0. Se escolhêssemos
o valor 0 e em alguma chamada da função, esse argumento fosse omitido, seria feito o teste da hipótese
H0 : µ = 0 por padrão.

32 CHAPTER 1. INTRODUÇÃO AO PYTHON

def t_test(x, mu0 = 0):
n = len(x)
s2 = np.var(x,ddof=1) # ddof=1, divisor n-1 para s2
xb = np.mean(x)
t = {'tc':0,'p.val':0,'S2': s2, 'xbar': xb}
t['tc'] = (xb-mu0) / (s2 / n)**0.5
t['p.val'] = 2*(1-sp.stats.t.cdf(abs(t['tc']),n-1))
return t

y = [1.76,1.81,1.74,1.71,1.79,1.75]
t = t_test(y) # teste H0: mu0=0
print('tc = ',t['tc'])
print('p.val = ',t['p.val'])
print(list(t.items())[2:4])

tc = 120.49896265113645
p.val = 7.465636997494585e-10
[('S2', 0.001280000000000002), ('xbar', 1.76)]

Vamos realizar um teste para a correlação em populações normais bivariadas. Assim, dado o par de
variáveis vetoriais x e y tomados em n indivíduos, temos a hipótese nula

H0 : ρ = 0

e a estatística do teste sob H0 dada por

tc =r
√

n − 2√
1 − r2

,

em que r é o coeficiente de correlação amostral entre X e Y ; e n é o tamanho da amostra. Sob H0, essa
estatística segue a distribuição t de Student com ν = n − 2 graus de liberdade.

A função deve receber os vetores x e y e retornar o resultado do teste: estatística e valor-p. Pode-se
utilizar a função cor do Python scipy para obter a correlação entre x e y.
def cor_test(x, y):

n = len(x)
if n != len(y):

print('Listas devem ter o mesmo tamanho!')
return

r = np.corrcoef(x,y)[0,1]
t = {'tc':0,'p.val':0,'r': r}
t['tc'] = r * (n-2)**0.5 / (1 - r**2)**0.5
t['p.val'] =2*(1-sp.stats.t.cdf(abs(t['tc']),n-2))
return t

x = [1, 2, 3.1, 4.2]
y = [2.1, 3.9, 6.1, 8.3]
t = cor_test(x, y)
print('tc = ',t['tc'])
print('p.val = ',t['p.val'])
print('r = ',t['r'])

1.9. ESTATÍSTICA COMPUTACIONAL 33

tc = 58.469836352468235
p.val = 0.0002923787083537466
r = 0.9997076212916461

Finalmente, vamos obter uma função para obtermos potências reais de matrizes quadradas simétricas
positivas definidas. Consideremosuma matriz A simétrica e positiva definida:

A =PΛP⊤,

então a potência de ordem α ∈ R é dada por

Aα =PΛαP⊤.

Deve receber A e retornar Aα. O script a seguir ilustra uma função para obtermos estas potências
matriciais. Observe que não é uma potência elemento a elemento. Também devemos observar que não
é importante que os autovalores estejam ordenados. Mas é óbvio que os autovetores associados a cada
autovalor deve estar corretamente associado e preservado e isso é feito pela biblioteca numpy por meio da
função eig().
def mat_power(A, alpha = 0.5):

e_val, e_vec = np.linalg.eig(A)
if any(e_val) < 0:

print('Matriz não é positiva definida!')
return

Ap = e_vec.dot(np.diag(e_val**alpha)).dot(np.transpose(e_vec))
return Ap

A = [[4,1],[1,2]]
print('A = ',A)
print('Aˆ(1/2): ',mat_power(A)) # raiz quadrada
A3 = mat_power(A, 1/3) # raiz cúbica
print('Aˆ(1/3): ',A3)
print('Aˆ(1/3)Aˆ(1/3)Aˆ(1/3): ',A3.dot(A3).dot(A3)) # verificando

A = [[4, 1], [1, 2]]
A^(1/2): [[1.97773553 0.29759397]
[0.29759397 1.38254759]]

A^(1/3): [[1.57094963 0.16768037]
[0.16768037 1.23558888]]

A^(1/3)A^(1/3)A^(1/3): [[4. 1.]
[1. 2.]]

1.9 Estatística Computacional
Os métodos de computação intensiva têm desempenhado um papel cada vez mais importante para resolver
problemas de diferentes áreas da ciência. Vamos apresentar algoritmos para gerar realizações de variáveis
aleatórias de diversas distribuições de probabilidade, para realizar operações matriciais, para realizar
inferências utilizando métodos de permutação e bootstrap, etc. Assim, buscamos realizar uma divisão
deste material em uma seção básica e em outra aplicada. As técnicas computacionais são denominadas
de estatística computacional se forem usadas para realizarmos inferências, para gerarmos realizações de
variáveis aleatórias ou para compararmos métodos e técnicas estatísticas.

34 CHAPTER 1. INTRODUÇÃO AO PYTHON

Vamos explorar métodos de geração de realizações de variáveis aleatórias de diversos modelos probabilísticos,
para manipularmos matrizes, para obtermos quadraturas de funções de distribuição de diversos modelos
probabilísticos e de funções especiais na estatística e finalmente vamos apresentar os métodos de computação
intensiva para realizarmos inferências em diferentes situações reais. Temos a intenção de criar algoritmos
em linguagem Python e posteriormente, quando existirem, apresentar os comandos para acessarmos os
mesmos algoritmos já implementados.

Vamos apresentar os métodos de bootstrap e Monte Carlo, os testes de permutação e o procedimento
jackknife para realizarmos inferências nas mais diferentes situações reais. Assim, este curso tem basicamente
duas intenções: possibilitar ao aluno realizar suas próprias simulações e permitir que realizem suas
inferências de interesse em situações em que seria altamente complexo o uso da inferência clássica.

Seja na inferência frequentista ou na inferência Bayesiana, os métodos de simulação de números aleatórios
de diferentes modelos probabilísticos assumem grande importância. Para utilizarmos de uma forma mais
eficiente a estatística computacional, um conhecimento mínimo de simulação de realizações de variáveis
aleatórias é uma necessidade que não deve ser ignorada. Vamos dar grande ênfase a este assunto, sem
descuidar dos demais. Apresentaremos neste material diversos algoritmos desenvolvidos e adaptados para
a linguagem Python.

Simular é a arte de construir modelos segundo Naylor et al. [1971], com o objetivo de imitar o funcionamento
de um sistema real, para averiguarmos o que aconteceria se fossem feitas alterações no seu funcionamento
(Dachs [1988]). Este tipo de procedimento pode ter um custo baixo, evitar prejuízos por não utilizarmos
procedimentos inadequados e otimizar a decisão e o funcionamento do sistema real.

Precauções contra erros devem ser tomadas quando realizamos algum tipo de simulação. Podemos
enumerar:

1. escolha inadequada das distribuições;

2. simplificação inadequada da realidade; e

3. erros de implementação.

Devemos fazer o sistema simulado operar nas condições do sistema real e verificar por meio de alguns
testes se os resultados estão de acordo com o que se observa no sistema real. A este processo denominamos
de validação. A simulação é uma técnica que usamos para a solução de problemas. Se a solução alcançada
for mais rápida, com eficiência igual ou superior, de menor custo e de fácil interpretação em relação a
outro método qualquer, o uso de simulação é justificável.

1.10 Exercícios
1. Criar no Python os vetores a⊤ = [4, 2, 1, 5] e b⊤ = [6, 3, 8, 9] e concatená-los formando um único

vetor. Obter o vetor c = 2a − b e o vetor d = b⊤a. Criar uma sequência cujo valor inicial é igual
a 2 e o valor final é 30 e cujo passo é igual a 2. Replicar cada valor da sequência 4 vezes de duas
formas diferentes (valores replicados ficam agregados e a sequência toda se replica sem que os valores
iguais fiquem agregados).

2. Selecionar o subvetor de x⊤ = [4, 3, 5, 7, 9, 10] cujos elementos são menores ou iguais a 7.

3. Criar a matriz

A =
[

10 1
1 2

]

e determinar os autovalores e a decomposição espectral de A.

1.10. EXERCÍCIOS 35

4. Construir uma função para verificar quantos elementos de um vetor de dimensão n são menores
ou iguais a uma constante k, real. Utilize as estruturas de repetições for e while para realizar
tal tarefa (cada uma destas estruturas deverá ser implementada em uma diferente função). Existe
algum procedimento mais eficiente para gerarmos tal função sem utilizar estruturas de repetições?
Se sim, implementá-lo.

5. Implementar uma função Python para realizar o teste t de Student para duas amostras independentes.
Considerar os casos de variâncias heterogêneas e homogêneas. Utilizar uma estrutura condicional
para aplicar o teste apropriado, caso as variâncias sejam heterogêneas ou homogêneas. A decisão
deve ser baseada em um teste de homogeneidade de variâncias. Para realizar tal tarefa implementar
uma função específica assumindo normalidade das amostras aleatórias.

6. Criar uma função para obter a inversa de Moore-Penrose de uma matriz qualquer n × m, baseado
na decomposição do valor singular, função svd do np.linalg.svd. Seja para isso uma matriz A,
cuja decomposição do valor singular é A = UDV⊤, em que D é a matriz diagonal dos valores
singulares e U e V são os vetores singulares correspondentes. A inversa de Moore-Penrose de A é
definida por A+ = VD−1U⊤.

36 CHAPTER 1. INTRODUÇÃO AO PYTHON

Chapter 2

Variáveis Aleatórias Uniformes

Neste capítulo vamos considerar a geração de números aleatórios para o modelo probabilístico uniforme.
A partir do modelo uniforme podemos gerar realizações de variáveis aleatórias de qualquer outro modelo
probabilístico. A geração de realizações de uma distribuição uniforme não pode ser realizado por máquinas.
Qualquer sequência produzida por uma máquina é uma sequência previsível de números pseudo-aleatórios.

Dois geradores de números aleatórios devem produzir os mesmos resultados nas suas aplicações. Se isso
não ocorrer, um deles não pode ser considerado um bom gerador de números aleatórios [Press et al., 1992].

Os conceitos de números uniformes e números aleatórios são muitas vezes confundidos. Números uniformes
são aqueles que variam aleatoriamente em um intervalo real de valores com probabilidade constante. No
entanto, devemos diferenciar números aleatórios uniformes de outros tipos de números aleatórios, como,
por exemplo, números aleatórios normais ou gaussianos. Estes outros tipos são geralmente provenientes
de transformações realizadas nos números aleatórios uniformes. Então, uma fonte confiável para gerar
números aleatórios uniformes determina o sucesso de métodos estocásticos de inferência e de processos de
simulação Monte Carlo.

2.1 Números Aleatórios Uniformes
Números uniformes aleatórios são aqueles que, a princípio, se situam dentro de um intervalo real, geralmente,
entre 0 e 1, para os quais não podemos produzir uma sequência previsível de valores e cuja função densidade
é constante. Em vários programas de computadores estes números são gerados utilizando o comando
random ou comandos similares. Em Pascal, por exemplo, se este comando for utilizado com o argumento
n, random(n), números aleatórios inteiros U do intervalo 0 ≤ U ≤ n − 1 são gerados e se o argumento n
não for usado, os números gerados são valores aleatórios reais do intervalo [0, 1).

Em geral, os programas utilizam o método congruencial. Vamos considerar os números uniformes inteiros
U1, U2, U3, . . . entre 0 e m − 1, em que m representa um grande número inteiro. Podemos gerar estes
números utilizando o método congruencial por meio da relação recursiva:

Ui+1 = (aUi + c) mod m (2.1)

em que m é chamado de módulo, a e c são inteiros positivos denominados de multiplicador e incremento,
respectivamente. O operador mod retorna o resto da divisão do argumento (aUi + c) por m. A sequência
recorrente (Equation 2.1) se repete em um período que não é maior que m, por razões óbvias. Se a, c e m
são adequadamente escolhidos, a sequência tem tamanho máximo igual a m. A escolha do valor inicial

37

38 CHAPTER 2. VARIÁVEIS ALEATÓRIAS UNIFORMES

U0 determina a sequência. O valor do número uniforme correspondente no intervalo de 0 a 1 é dado por
Ui+1/m, que é sempre menor que 1, mas podendo ser igual a zero.

Vamos apresentar um exemplo didático para ilustrar um gerador de números aleatórios. Sejam U0 = a =
c = 7 e m = 10, logo,

U1 = (7 × 7 + 7) mod 10 = 56 mod 10 = 6

U2 = (7 × 6 + 7) mod 10 = 49 mod 10 = 9

e assim sucessivamente. Obtemos a sequência de números aleatórios:

{7, 6, 9, 0, 7, 6, 9, 0, 7, 6, 9, · · · }

e verificamos que o período é igual a 4, {7,6, 9, 0, · · · }, que é menor do que m = 10.

Este método tem a desvantagem de ser correlacionado serialmente. Se m, a ou c não forem cuidadosamente
escolhidos a correlação pode comprometer a sequência gerada. Por outro lado, o método tem a vantagem
de ser muito rápido. Podemos perceber que a cada chamada do método, somente alguns poucos cálculos
são executados. Escolhemos, em geral, o valor de m pelo maior inteiro que pode ser representado pela
máquina de 32 bits, qual seja, 232. Um exemplo que foi utilizado por muitos anos nos computadores IBM
mainframe, que representam uma péssima escolha é a = 65.539 e m = 231.

A correlação serial não é o único problema desse método. Os bits de maior ordem são mais aleatórios
do que os bits de menor ordem (mais significantes). Devemos gerar inteiros entre 1 e 20 por j =
1 + int(20 × random(semente)), ao invés de usar o método menos acurado j = 1 + mod (int(1000000 ×
random(semente)),20), que usa bits de menor ordem. Existem fortes evidências, empíricas e teóricas,
que o método congruencial

Ui+1 = aUi mod m (2.2)

é tão bom quanto o método congruencial com c ≠ 0, se o módulo m e o multiplicador a forem escolhidos
com cuidado [Press et al., 1992]. Park and Miller [1988] propuseram um gerador “padrão” mínimo baseado
nas escolhas:

a = 75 = 16.807 m = 231 − 1 = 2.147.483.647 (2.3)

Este gerador de números aleatórios não é perfeito, mas passou por todos os testes a qual foi submetido
e tem sido usado como padrão para comparar e julgar outros geradores. Um problema que surge e que
devemos contornar é que não é possível implementarmos diretamente em uma linguagem de alto-nível a
equação (Equation 2.2) com as constantes de (Equation 2.3), pois o produto de a e Ui excede, em geral, o
limite máximo de 32 bits para inteiros. Podemos usar um truque, devido a Schrage [1979], para multiplicar
inteiros de 32 bits e aplicar o operador de módulo, garantindo portabilidade para implementação em
praticamente todas as linguagens e todas as máquinas. O algoritmo de Schrage baseia-se na fatoração de
m dada por:

m = aq + r; i.e., q = ⌊m/a⌋; r = m mod a

em que ⌊z⌋ denota a parte inteira do número z utilizado como argumento. Para um número Ui entre 1 e
m − 1 e para r pequeno, especificamente para r < q, Schrage [1979] mostrou que ambos a(Ui mod q) e
r⌊Ui/q⌋ pertencem ao intervalo 0 · · · m − 1 e que

aUi mod m =
{

a(Ui mod q) − r⌊Ui/q⌋ se maior que 0
a(Ui mod q) − r⌊Ui/q⌋ + m caso contrário. (2.4)

2.1. NÚMEROS ALEATÓRIOS UNIFORMES 39

Computacionalmente observamos que a relação:

a(Ui mod q) = a(Ui − q⌊Ui/q⌋)

se verifica. No Python pode-se optar por usar o operador % (mod), que retorna o resto da operação entre
dois inteiros e o operador // (div), que retorna o resultado do dividendo para operações com inteiros.
A quantidade Ui mod q = Ui − (Ui div q) × q pode ser obtida em Python simplesmente por Ui%q.
Atribuímos o resultado a uma variável qualquer definida como inteiro. Para aplicarmos o algoritmo de
Schrage às constantes de (Equation 2.3) devemos usar os seguintes valores: q = 127.773 e r = 2.836.

A seguir apresentamos o algoritmo do gerador padrão mínimo de números aleatórios:
gerador padrão mínimo de números aleatórios adaptado de Park and
Miller. Retorna desvios aleatórios uniformes entre 0 e 1. Fazer
"sem" igual a qualquer valor inteiro para iniciar a sequência;
"sem" não pode ser alterado entre sucessivas chamadas da sequência
se "sem" for zero ou negativo, um valor dependente do valor do relógio
do sistema no momento da chamada é usado como semente. Constantes
usadas a = 7ˆ5 = 16.807; m = 2ˆ31 - 1 = 2.147.483.647
e c = 0

def gnup(sem, q, a, r, m):
k = sem // q # divisão por inteiros
sem = a * (sem % q) - r * k
if sem < 0:

sem = sem + m
u = sem / m
res = {'sem': sem, 'u': u}
return res

from datetime import datetime # obter o data/horário do sistema

def gnap(n, sem = 0):
a = 16807; m = 2147483647
q = 127773; r = 2836
if sem <= 0:

t = datetime.now()
sem = t.second+t.minute*60+t.hour*3600+t.day*86400

u = []
for i in range(n):

x = gnup(sem, q, a, r, m)
u.append(x['u'])
sem = x['sem']

return u
Exemplos de uso
n = 5
x = gnap(n,0)
Formatando a saída para 5 casas decimais
print(["%0.5f" % v for v in x])
especificando a semente
y = gnap(n, 1001)
Formatando a saída para 5 casas decimais
print(["%0.5f" % v for v in y])
tempo de execução para cada número aleatório

40 CHAPTER 2. VARIÁVEIS ALEATÓRIAS UNIFORMES

n = 100000
t1 = datetime.now()
x = gnap(n)
t2 = datetime.now()
t = t2-t1
print('tempo médio (micros): ',t.microseconds / n)
print('tempo total (micros): ',t.microseconds)

['0.18463', '0.04137', '0.36165', '0.32518', '0.31658']
['0.00783', '0.66933', '0.36093', '0.10878', '0.30000']
tempo médio (micros): 0.29485
tempo total (micros): 29485

Foi computado o tempo médio e o tempo total para rodar 100000 números aleatórios uniformes. Para
capturar o tempo, foi usado o pacote datetime e também para obter a diferença de tempo entre o início e
o fim do processamento de nossa função. O bloco para fazer isso deve ser executado de uma só vez, ou
seja, marcando o bloco e teclando enter no Positron.

Algumas considerações a respeito desse algoritmo: a) a função gnap (gerador de números aleatórios mínima)
retorna um número real entre 0 e 1. Este tipo de especificação determina que as variáveis possuam
precisão dupla. A precisão dupla (double-precision float) possui números na faixa de ±2,225×10−308

a ±1,798 × 10308, ocupa 24 bytes de memória e possui 15 − 17 dígitos significantes; b) o valor da semente é
definido pelo usuário e é passado como parâmetro para a função. Isso significa que a variável do programa
que chama a função e que é passada como semente deve ser atualizada com o novo valor modificado em
gnup. Se o seu valor inicial for zero ou negativo, a função atribui um inteiro dependente da hora do
sistema no momento da chamada; c) a função tem dependência do pacote datetime, que foi usado para
capturar a hora e dia do sistema.

A rotina é iniciada com os valores de n e da semente fornecidos pelo usuário. Se a semente for nula ou
negativa, atribuímos um novo valor dependente do relógio do sistema no momento da chamada. A partir
deste ponto o programa deve chamar reiteradas vezes a função gnap, que retorna o valor do número
aleatório entre 0 e 1 utilizando o algoritmo descrito anteriormente, até que a sequência requerida pelo
usuário seja completada. Nas sucessivas chamadas desta função, o valor da semente é sempre igual ao
valor do último passo.

O período de gnap é da ordem de 231 ≈ 2,15 × 109, ou seja, a sequência completa é um pouco superior a
2 bilhões de números aleatórios. Assim, podemos utilizar gnap para alguns poucos propósitos práticos.
Como já salientamos o gerador padrão mínimo de números aleatórios possui duas limitações básicas,
quais sejam, sequência curta e correlação serial. Assim, como existem métodos para eliminar a correlação
serial e que aumentam o período da sequência, recomendamos que sejam adotados. Claro que a função
apresentada teve por objetivo ilustrar como podemos programar nossas próprias funções para gerarmos
números aleatórios uniformes. O Python, no entanto, possui seu próprio gerador de números uniformes,
que veremos na sequência. Um dos melhores e mais interessantes geradores de números aleatórios é o
Mersenne Twister (MT). Mersenne Twister é um gerador de números pseudo-aleatórios desenvolvido por
Makoto Matsumoto e Takuji Nishimura nos anos de 1996 e 1997 [Matsumoto and Nishimura, 1998]. O
MT possui os seguintes méritos segundo seus desenvolvedores:

• foi desenvolvido para eliminar as falhas dos diferentes geradores existentes;

• possui a vantagem de apresentar o maior período e maior ordem de equidistribuição do que de qualquer
outro método implementado. Ele fornece um período que é da ordem de 219.937 −1 ≈ 4,3154×106001,
e uma equidistribuição 623-dimensional;

• é um dos mais rápido geradores existentes, embora complexo;

• faz uso de forma muito eficiente da memória.

2.2. NÚMEROS ALEATÓRIOS UNIFORMES NO PYTHON 41

Existem muitas versões implementadas deste algoritmo, inclusive em Fortran e C e que estão disponíveis
na internet. Felizmente, o Python já possui este algoritmo implementado. Por se tratar de um tópico
mais avançado, que vai além do que pretendemos apresentar nestas notas de aulas, não descreveremos
este tipo de procedimento para incorporações de funções escritas em outras linguagens.

2.2 Números Aleatórios Uniformes no Python
No Python podemos gerar números aleatórios uniformes contínuos utilizando uma função pré-programada.
Os números aleatórios uniformes são gerados pelo comando random.uniform(low=0.0, high=1.0,
size=None) da biblioteca numpy, em que None é para gerar apenas um valor, podendo ser substituído por
n, entre low e high (excluído), que são argumentos que delimitam o valor mínimo e máximo da sequência
a ser gerada. O controle da semente para se gerar uma sequência reproduzível de números uniformes é
dada pelo comando random.seed(seed=None) do numpy, em que o argumento seed deve ser um número
inteiro. O Python automaticamente determina a cada chamada uma nova semente. Conseguimos gerar
diferentes sequências em cada chamada do comando gerador, sem nos preocuparmos com a semente
aleatória. O gerador de números aleatórios uniformes usa o algoritmo Mersenne-Twister por padrão.

No programa apresentado a seguir ilustramos como podemos gerar n números aleatórios uniformes entre 0
e 1 de forma compacta, simples e eficiente:
import numpy as np
n = 5
x = np.random.uniform(low=0.0, high=1.0, size=n)
print(x)
Fixando a semente
np.random.seed(seed=1000)
np.random.uniform(low=0.0, high=1.0, size=n)
np.random.seed(seed=1000)
np.random.uniform(low=0.0, high=1.0, size=n) # igual a anterior (mesma semente)

[0.44924387 0.19552483 0.69580229 0.670942 0.46820941]

array([0.65358959, 0.11500694, 0.95028286, 0.4821914 , 0.87247454])

array([0.65358959, 0.11500694, 0.95028286, 0.4821914 , 0.87247454])

Fizemos um programa para comparar o tempo de execução das funções gnap e random.uniform() e
retornamos o tempo médio para cada realização da variável aleatória. Desta forma verificamos que o
algoritmo random.uniform é mais rápido de todos, conforme valores relativos apresentados a seguir.
Obviamente temos que considerar que o algoritmo do numpy é uma função compilada. O algoritmo gnap
por sua vez foram implementados em Python, que usa uma linguagem interpretada. As comparações de
tempo podem ser vistas no programa a seguir. O programa utilizado foi:
tempo de execução para cada número aleatório
comparativo entre nosso gerador e o do np
n = 100000
t1 = datetime.now()
x = gnap(n)
t2 = datetime.now()
tgp = t2-t1
print('tempo médio gnap: ',tgp.microseconds / n)
t1 = datetime.now()
x = np.random.uniform(low=0.0, high=1.0, size=n)
t2 = datetime.now()
tnp = t2-t1

42 CHAPTER 2. VARIÁVEIS ALEATÓRIAS UNIFORMES

print('tempo médio numpy: ',tnp.microseconds / n)
tempo relativo
tgp / tnp

tempo médio gnap: 0.31908
tempo médio numpy: 0.02231

14.302106678619452

Podemos fazer um histograma usando o programa a seguir. Para isso usamos a biblioteca matplotlib e o
resultado foi:
import matplotlib.pyplot as plt
n = 100000
x = np.random.uniform(low=0.0, high=1.0, size=n) # gnap(n) troque para testar
graf = plt.hist(x, bins='auto', color='#14e8f3',rwidth=0.95,alpha=0.7)

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2.3 Exercícios
1. Utilizar o gerador gnap para gerar n realizações de uma distribuição exponencial f(x) = λe−λx.

Sabemos do teorema da transformação de probabilidades, que se U tem distribuição uniforme, X =
F −1(U) tem distribuição de probabilidade com densidade f(x) = F ′(x); em que F (x) =

∫ x

−∞ f(t)dt

é a função de distribuição de X e F −1(y) é a sua função inversa para o valor y. Para a exponencial
a função de distribuição de probabilidade é: F (x) =

∫ x

0 λe−λtdt = 1 − e−λx. Para obtermos a função
inversa temos que igualar u a F (x) e resolver para x. Assim, u = 1 −e−λx e resolvendo para x temos:
x = − ln (1 − u)/λ. Devido à simetria da distribuição uniforme 1 − u pode ser trocado por u. O
resultado final é: x = − ln (u)/λ. Para gerar números da exponencial basta gerar números uniformes
e aplicar a relação x = − ln (u)/λ. Fazer isso para construir uma função que gera n realizações
exponenciais. Aplicar a função para obter amostras aleatórias da exponencial de tamanho n = 100 e
obter o histograma da amostra simulada. Calcule a média e a variância e confronte com os valores
teóricos da distribuição exponencial.

2. Para gerar números de uma distribuição normal, cuja densidade é dada por f(x) =

2.3. EXERCÍCIOS 43

1/(
√

2πσ2) exp{−(x − µ)2/(2σ2)}, qual seria a dificuldade para podermos utilizar o teorema
anunciado no exercício proposto anterior?

3. Como poderíamos adaptar o algoritmo apresentados nesse capítulo para gerar números aleatórios
uniformes utilizando os valores propostos por Park e Miller, ou seja, a = 48.271 e m = 231 − 1?
Implementar o algoritmo, tomando cuidado em relação aos novos multiplicador q e resto r da
fatoração de m?

4. Como você poderia propor um teste estatístico simples para avaliar a aleatoriedade da sequência de
números uniformes gerados por esses algoritmos apresentados no capítulo? Implementar sua ideia.

44 CHAPTER 2. VARIÁVEIS ALEATÓRIAS UNIFORMES

Chapter 3

Variáveis Aleatórias Não-Uniformes

Neste capítulo vamos apresentar alguns métodos gerais para gerarmos realizações de variáveis aleatórias
de outras distribuições de probabilidade, como, por exemplo, dos modelos exponencial, normal e binomial.
Implementaremos algumas funções em Python e finalizaremos com a apresentação das rotinas otimizadas
e já implementadas.

3.1 Introdução
Vamos estudar a partir deste instante um dos principais métodos, determinado pela lei fundamental
de transformação de probabilidades, para gerarmos dados de distribuições de probabilidades contínuas
ou discretas. Para alguns casos específicos, vamos ilustrar com procedimentos alternativos, que sejam
eficientes e computacionalmente mais simples. Esta transformação tem como modelo fundamental a
distribuição uniforme (0, 1). Por essa razão a geração de números uniformes contínuos é tão importante.

Veremos posteriormente nestas notas de aulas algoritmos para obtermos numericamente a função de
distribuição F (x) e a sua função inversa x = F −1(p), em que p pertence ao intervalo que vai de 0 a 1.
Este conhecimento é fundamental para a utilização deste principal método.

Neste capítulo limitaremos a apresentar a teoria para alguns poucos modelos probabilísticos, para os quais
podemos facilmente obter a função de distribuição de probabilidade e a sua inversa analiticamente. Para
os modelos mais complexos, embora o método determinado pela lei fundamental de transformação de
probabilidades seja adequado, apresentaremos apenas métodos alternativos, uma vez que, em geral, ele é
pouco eficiente em relação ao tempo gasto para gerarmos cada realização da variável aleatória. Isso se deve
ao fato de termos que obter a função inversa numericamente da função de distribuição de probabilidade
dos modelos probabilísticos mais complexos.

3.2 Métodos Gerais para Gerar Realizações de Variáveis
Aleatórias

Podemos obter realizações de variáveis aleatórias de qualquer distribuição de probabilidade a partir de
números aleatórios uniformes. Para isso um importante teorema pode ser utilizado: o teorema fundamental
da transformação de probabilidades.

Theorem 3.1 (Teorema fundamental da Transformação de Probabilidades). Sejam U uma variável
uniforme U(0, 1) e X uma variável aleatória com densidade f e função de distribuição F contínua e
invertível, então X = F −1(U) possui densidade f . Sendo F −1 a função inversa da função de distribuição
F .

45

46 CHAPTER 3. VARIÁVEIS ALEATÓRIAS NÃO-UNIFORMES

Demonstração: Seja X uma variável aleatória com função de distribuição F e função densidade f . Se
u = F (x), então o jacobiano da transformação é du/dx = F ′(x) = f(x), em que U é uma variável aleatória
uniforme U(0, 1), com função densidade g(u) = 1, para 0 < u < 1 e g(u) = 0 para outros valores de u.
Assim, a variável aleatória X = F −1(U) tem densidade f dada por:

fX(x) = g(u)
∣∣∣∣du

dx

∣∣∣∣ = g (FX(x)) f(x) = f(x).

Em outras palavras a variável aleatória X = F −1(U) possui função densidade fX(x), estabelecendo o
resultado almejado e assim, a prova fica completa. ■

Para variáveis aleatórias discretas, devemos modificar o teorema para podermos contemplar funções de
distribuições F em escada, como são as funções de distribuição de probabilidades associadas a essas
variáveis aleatórias.

Na Figura Figure 3.1 representamos como gerar uma realização de uma variável aleatória X com densidade
f e função de distribuição F . Assim, basta gerarmos um número uniforme u0 e invertermos a função de
distribuição F neste ponto. Computacionalmente a dificuldade é obtermos analiticamente uma expressão
para a função F −1 para muitos modelos probabilísticos. Em geral, essas expressões não existem e métodos
numéricos são requeridos para inverter a função de distribuição. Neste capítulo vamos apresentar este
método para a distribuição exponencial.

Figure 3.1: Ilustração do teorema fundamental da transformação de probabilidades para gerar uma variável
aleatória X com densidade f(x) = F ′(x). A partir de um número aleatório uniforme u0 a função de
distribuição é invertida neste ponto para se obter x0, com densidade f(x).

Outro método bastante geral que utilizaremos é denominado de método da amostragem por rejeição. Esse
método tem um forte apelo geométrico. Procuraremos, a princípio, descrever esse método de uma forma
bastante geral. Posteriormente, aplicaremos este método para gerarmos variáveis aleatórias de alguns
modelos probabilístico. A grande vantagem deste método contempla o fato de não precisarmos obter a
função de distribuição de probabilidade e nem a sua inversa. Estas estratégias só podem ser aplicadas
em muitos dos modelos probabilísticos existentes, se utilizarmos métodos numéricos iterativos. Seja f(x)
a função densidade de probabilidade para a qual queremos gerar uma amostra aleatória. A área sob a
curva para um intervalo qualquer de x corresponde à probabilidade de gerar um valor x nesse intervalo.

3.2. MÉTODOS GERAIS PARA GERAR REALIZAÇÕES DE VARIÁVEIS ALEATÓRIAS 47

Se pudéssemos gerar um ponto em duas dimensões, digamos (X,Y), com distribuição uniforme sob a área,
então a coordenada X teria a distribuição desejada.

Para realizarmos de uma forma eficiente a geração de realizações variáveis aleatórias com densidade f(x),
evitando as complicações numéricas mencionadas anteriormente, poderíamos definir uma função qualquer
g(x). Essa função tem que ter algumas propriedades especiais para sua especificação. Deve possuir área
finita e ter para todos os valores x densidade g(x) superior a f(x). Essa função é denominada de função
de comparação. Outra característica importante que g(x) deve ter é possuir função de distribuição G(x)
analiticamente computável e invertível, ou seja, x = G−1(u). Como a função g(x) não é necessariamente
uma densidade, vamos denominar a área sob essa curva no intervalo para x de interesse por A =

∫∞
−∞ g(x)dx.

Como G−1 é conhecida, podemos gerar pontos uniformes (x,y) que pertencem à área sob a curva g(x)
facilmente. Para isso basta gerarmos um valor de uma variável aleatória uniforme u1 entre 0 e A e
aplicarmos o teorema (Theorem 3.1). Assim, obtemos o primeiro valor do ponto (x0,y0) por x0 = G−1(u1).
Para gerarmos a segunda coordenada do ponto não podemos gerar um valor de uma variável aleatória
uniforme no intervalo de 0 a A, sob pena de gerarmos um ponto que não está sob a curva g(x). Assim,
calculamos o valor de g no ponto x0 por g(x0). Geramos y0 = u2, sendo u2 o valor de uma variável
aleatória uniforme entre 0 e g(x0). Assim, obtemos um ponto (x0,y0) uniforme sob a curva g(x). A
dificuldade deste método é justamente estabelecer essa função g(x) com as propriedades exigidas.

Vamos agora traçar as curvas correspondentes a g(x) e f(x) no mesmo gráfico. Se o ponto uniforme (x0,y0)
está na área sob a curva f(x), ou seja se y0 ≤ f(x0), então aceitamos x0 como um valor válido de f(x); se por
outro lado o ponto estiver na região entre as densidades f(x) e g(x), ou seja se f(x0) < y0 ≤ g(x0), então
rejeitamos x0. Uma forma alternativa de apresentarmos esse critério é tomarmos y0 de uma distribuição
U(0,1) e aceitarmos ou rejeitarmos x0 se y0 ≤ f(x0)/g(x0) ou se y0 > f(x0)/g(x0), respectivamente.
Ilustramos esse método na Figura Figure 3.2, sendo que a A representa a área total sob a curva g(x).

Figure 3.2: Método da rejeição para gerar um valor x0 da variável aleatória X com função densidade f(x)
que é menor do que g(x) para todo x. Nessa ilustração, x0 deve ser aceito.

Vamos ilustrar o primeiro método e salientar que o segundo método é o que ocorre na maioria dos casos

48 CHAPTER 3. VARIÁVEIS ALEATÓRIAS NÃO-UNIFORMES

de geração de variáveis aleatórias. A exponencial é uma distribuição de probabilidade em que facilmente
podemos aplicar o teorema Theorem 3.1 para gerarmos amostras aleatórias. Assim, optamos por iniciar o
processo de geração de números aleatórios nesta distribuição, uma vez que facilmente podemos obter a
função de distribuição e a sua inversa. Seja X uma variável aleatória cuja densidade apresentamos por:

f(x) = λe−λx (3.1)

em que λ > 0 é o parâmetro da distribuição exponencial e x > 0.

A função de distribuição exponencial é dada por:

F (x) =
∫ x

0
λe−λtdt

F (x) = 1 − e−λx. (3.2)

A função de distribuição inversa x = F −1(u) é dada por:

x = F −1(u) = − ln(1 − u)
λ

(3.3)

em que u é um número uniforme (0, 1).

Devido à distribuição uniforme ser simétrica, podemos substituir 1 − u na equação (Equation 3.3) por u.
Assim, para gerarmos uma realização de uma variável exponencial X, a partir de uma variável aleatória
uniforme, utilizamos o teorema Theorem 3.1 por intermédio da equação:

x = − ln(u)
λ

. (3.4)

O algoritmo Python para gerarmos realizações de variáveis aleatórias exponenciais é dado por:
programa demonstrando a geração de n realizações de variáveis
aleatórias exponenciais com parâmetro lamb, utilizamos
a função np.random.uniform() para
gerarmos números aleatórios uniformes
import numpy as np
def rexpon(n, lamb = 1.0):

u = np.random.uniform(0.0, 1.0, n) # gera vetor u (U(0,1))
x = -np.log(u) / lamb # gera vetor x com distrib. exp.
return x # retorna o vetor x

exemplo
rexpon(5, 0.1)

array([5.68759477, 1.05310872, 0.98271196, 7.5075487 , 16.84574452])

Podemos utilizar a função pré-existente do Python (np.random.exponential(scale=1.0, size=None))
para realizarmos a mesma tarefa. Simplesmente digitamos np.random.exponential(scale=10, size=5)
e teremos uma amostra aleatória de tamanho n de uma exponencial com parâmetro λ = 1/scale. O
Python faz com que a estatística computacional seja ainda menos penosa e portanto acessível para a
maioria dos pesquisadores.

3.3. VARIÁVEIS ALEATÓRIAS DE ALGUMAS DISTRIBUIÇÕES IMPORTANTES 49

3.3 Variáveis Aleatórias de Algumas Distribuições Importantes
Vamos descrever nesta seção alguns métodos específicos para gerarmos algumas realizações de variáveis
aleatórias. Vamos enfatizar a distribuição normal. Apesar de o mesmo método apresentado na seção
Section 3.2 poder ser usado para a distribuição normal, daremos ênfase a outros processos. Para utilizarmos
o mesmo método anterior teríamos que implementar uma função parecida com rexpon, digamos rnormal.
No lugar do comando x = -log(u)/lamb deveríamos escrever x = invnorm(u) × σ + µ, sendo que
invnorm(u) é a função de distribuição normal padrão inversa. A distribuição normal padrão dentro da
família normal, definida pelos seus parâmetros µ e σ2, é aquela com média nula e variância unitária.
Esta densidade será referenciada por N(0,1). Essa deve ser uma função externa escrita pelo usuário. Os
argumentos µ e σ da função são a média e o desvio padrão da distribuição normal que pretendemos gerar.
A função densidade da normal é:

f(x) = 1√
2πσ2

e− (x−µ)2

2σ2 (3.5)

Nenhuma outra função utilizando o teorema Theorem 3.1 será novamente apresentada, uma vez que
podemos facilmente adaptar as funções rexpon se tivermos um eficiente algoritmo de inversão da função
de distribuição do modelo probabilístico alvo. A dificuldade deste método é a necessidade de uma enorme
quantidade de cálculo para a maioria das densidades. Isso pode tornar ineficiente o algoritmo, pois o
tempo de processamento é elevado.

Podemos ainda aproveitar a relação entre algumas funções de distribuições para gerarmos realizações de
variáveis aleatórias de outras distribuições. Por exemplo, se X é normal com densidade (Equation 3.5),
N(µ,σ2), podemos gerar realizações de Y = eX . Sabemos que fazendo tal transformação Y terá distribuição
log-normal, cuja densidade com parâmetros de locação α (µ) e escala β (σ) é:

f(y) = 1
yβ

√
2π

e
− 1

2

[
ln(y)−α

β

]2

, y > 0. (3.6)

Um importante método usado para gerar dados da distribuição normal é o de Box-Müller, que é baseado na
generalização do método da transformação de variáveis para mais de uma dimensão. Para apresentarmos
esse método, vamos considerar p variáveis aleatórias X1, X2, . . . , Xp com função densidade conjunta
f(x1,x2, . . . , xp) e p variáveis Y1, Y2, . . ., Yp, funções de todos os X’s, então a função densidade conjunta
dos Y ’s é:

f(y1, . . . , yp) = f(x1, . . . , xp)abs

∣∣∣∣∣∣∣∣
∂x1
∂y1

. . . ∂x1
∂yp

...
∂xp

∂y1
. . .

∂xp

∂yp

∣∣∣∣∣∣∣∣ (3.7)

em que J = |∂()/∂()| é o Jacobiano da transformação dos X’s em relação aos Y ’s.

Vamos considerar a transformação (Equation 3.7) para gerar dados normais com densidade dadas por
(Equation 3.5). Para aplicarmos a transformação de Box-Müller, vamos considerar duas variáveis aleatórias
uniformes entre 0 e 1, representados por X1 e X2 e duas funções delas, representadas por Y1 e Y2 e dadas
por:

 y1 =
√

−2 ln x1 cos (2πx2)

y2 =
√

−2 ln x1 sin (2πx2)
(3.8)

Ao explicitarmos X1 e X2 em (Equation 3.8) obtemos alternativamente:

50 CHAPTER 3. VARIÁVEIS ALEATÓRIAS NÃO-UNIFORMES


x1 = e− 1

2 (y2
1+y2

2)

x2 = 1
2π arctan

(
y2
y1

) (3.9)

Sabendo que a seguinte derivada dk arctan(g)/dx é dada por k(dg/dx)/(1 + g2), em que g é uma função
de X, então o Jacobiano da transformação é:

∣∣∣∣∣ ∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣ =

∣∣∣∣∣∣
−y1e−0,5(y2

1+y2
2) −y2e−0,5(y2

1+y2
2)

− y2

2πy2
1

(
1+

y2
2

y2
1

) 1

2πy1

(
1+

y2
2

y2
1

)
∣∣∣∣∣∣ = − 1

2π
e−0,5(y2

1+y2
2) (3.10)

Assim, a função densidade conjunta de Y1 e Y2 é dada por f(x1,x2)|J |, sendo

f(y1,y2) =
[

1√
2π

e−
y2

1
2

] [
1√
2π

e−
y2

2
2

]
. (3.11)

Desde que a densidade conjunta de Y1 e Y2 é o produto de duas normais independentes, podemos afirmar
que as duas variáveis geradas são normais padrão independentes, como pode ser visto em Johnson and
Wichern [1998] e Ferreira [2018].

Assim, podemos usar esse resultado para gerarmos variáveis aleatórias normais. A dificuldade, no entanto,
é apenas computacional. A utilização de funções trigonométricas como seno e cosseno pode limitar a
performance do algoritmo gerado tornando-o lento. Um truque apresentado em Press et al. [1992] é
bastante interessante para evitarmos diretamente o uso de funções trigonométricas. Esse truque representa
uma melhoria do algoritmo de Box-Müller e é devido a Marsaglia and Bray [1964].

Ao invés de considerarmos os valores das variáveis aleatórias uniformes x1 e x2 de um quadrado de lado
igual a 1 (quadrado unitário), tomarmos u1 e u2 como coordenadas de um ponto aleatório em um círculo
unitário (de raio igual a 1). A soma de seus quadrados R2 = U2

1 + U2
2 é uma variável aleatória uniforme

que pode ser usada como X1. Já o ângulo que o ponto (u1, u2) determina em relação ao eixo 1 pode
ser usado como um ângulo aleatório dado por Θ = 2πX2. Podemos apontar que a vantagem da não
utilização direta da expressão (Equation 3.8) refere-se ao fato do cosseno e do seno poderem ser obtidos
alternativamente por: cos (2πx2) = u1/

√
r2 e sin (2πx2) = u2/

√
r2. Evitamos assim as chamadas de

funções trigonométricas. Na Figura Figure 3.3 ilustramos os conceitos apresentados e denominamos o
ângulo que o ponto (u1,u2) determina em relação ao eixo u1 por θ.

Agora podemos apresentar o função boxmuller para gerar dados de uma normal utilizando o algoritmo de
Box-Müller. Essa função utiliza a função polar para gerar dois valores aleatórios, de variáveis aleatórias
independentes normais padrão Y1 e Y2. A função boxmuller é:
Função boxmuller retorna uma amostra de tamanho n de
uma distribuição normal com média mu e variância sigmaˆ2
utilizando o método Polar Box-Müller

import matplotlib.pyplot as plt
def polar():

r2 = -1
while r2 <= 0 or r2 >= 1:

u = np.random.uniform(-1.0,1.0,2)
r2 = u[0]**2+u[1]**2

y = (-2 * np.log(r2) / r2)**0.5 * u
return y

3.3. VARIÁVEIS ALEATÓRIAS DE ALGUMAS DISTRIBUIÇÕES IMPORTANTES 51

Figure 3.3: Círculo unitário mostrando um ponto aleatório (u1, u2) com r2 = u2
1 + u2

2 representando x1 e
θ o ângulo que o ponto (u1, u2) determina em relação ao eixo 1. No exemplo, o ponto está situado no
círculo unitário, conforme é exigido.

52 CHAPTER 3. VARIÁVEIS ALEATÓRIAS NÃO-UNIFORMES

def boxmuller(n, mu = 0, sigma = 1):
if n % 2 == 0: # n é par

k = n // 2
for i in range(k):

if i == 0:
x = polar()

else:
x = np.append(x,polar())

else: # n é ímpar
k = n // 2
if k == 0:

x = polar()[0]
else:

for i in range(k):
if i == 0:
x = polar()

else:
x = np.append(x,polar())

x = np.append(x,polar()[0])
x = x * sigma + mu
return x

n = 30000
x = boxmuller(n, 10, 2)
graf = plt.hist(x, bins=20, color='#14e8f3',rwidth=0.95,alpha=0.7)
plt.show()

2 4 6 8 10 12 14 16 18
0

1000

2000

3000

4000

Algumas aproximações são apresentadas em Atkinson and Pearce [1976] e serão apenas descritas na
sequência. Uma das aproximações faz uso da densidade Tukey-lambda e aproxima a normal igualando os
quatro primeiros momentos. Esse algoritmo, além de ser uma aproximação, tem a desvantagem de utilizar
a exponenciação que é uma operação lenta. Utilizando essa aproximação podemos obter uma variável

3.3. VARIÁVEIS ALEATÓRIAS DE ALGUMAS DISTRIBUIÇÕES IMPORTANTES 53

normal X a partir de uma variável uniforme U ∼ U(0,1) por:

X = [U0,135 − (1 − U)0,135]/0,1975.

Outro método é baseado na soma de 12 ou mais variáveis uniformes (Ui ∼ U(0,1)) independentes. Assim,
a variável X =

∑12
i Ui − 6 tem distribuição aproximadamente normal com média 0 e variância 1. Isso

ocorre em decorrência do teorema do limite central e em razão de cada uma das 12 variáveis uniformes
possuírem média 1/2 e variância 1/12.

Estas duas aproximações tem valor apenas didático e não devem ser recomendadas como uma forma de
gerar variáveis normais. Muitas vezes esse fato é ignorado em problemas que requerem elevada precisão e
confiabilidade dos resultados obtidos. Quando isso acontece conclusões incorretas ou no mínimo imprecisas
podem ser obtidas.

De uma forma geral temos

X =

k∑
i=1

Ui − k

2√
k

12

∼ N(0,1),

pois E(Ui) = (b − a)/2 e V (Ui) = (b − a)2/12, em que k é o número de uniformes que devem ser somadas
para cada realização da variável normal. A seguir, implementamos essas duas aproximações para fins de
treinamento em criação de funções com o Python.

A primeira é a Tukey-Lambda:
Aproximação baseada na Tukey-Lambda
def tukeylambda(n, mu = 0, sigma = 1):

x = np.random.uniform(0.0,1.0,n)
x = (x**0.135 -(1-x)**0.135) / 0.1975
x = x * sigma + mu
return x

n = 1000000
x = tukeylambda(n, 10,10)
np.mean(x)
np.std(x)

np.float64(9.991828169781451)

np.float64(10.005908735163825)

A segunda é a aproximação da soma de k uniformes, usando o teorema do limite central:
Aproximação baseada na soma de k
uniformes
def soma_un(u, k):

if k == 12:
rn = np.sum(u) - 6

else:
rn = (np.sum(u) - k / 2) / (k / 12)**0.5

return rn

def norm_tlc(n, mu = 0, sigma = 1, k = 12):
x = []
for i in range(n):

54 CHAPTER 3. VARIÁVEIS ALEATÓRIAS NÃO-UNIFORMES

u = np.random.uniform(0.0,1.0,k)
x. append(soma_un(u, k))

x = np.asarray(x) * sigma + mu
return x

n = 100000
k = 12
x = norm_tlc(n, 10, 10, k)
np.mean(x)
np.std(x)

np.float64(10.016603390067642)

np.float64(10.005439687766788)

3.4 Distribuição Binomial
Vamos ilustrar a partir da binomial a geração de realizações de variáveis aleatórias discretas. A distribuição
binomial é surpreendentemente importante nas aplicações da estatística. Esta distribuição aparece nas
mais variadas situações reais e teóricas. Por exemplo, o teste não-paramétrico do sinal utiliza a distribuição
binomial, a ocorrência de animais doentes em uma amostra de tamanho n pode ser muitas vezes modelada
pela distribuição binomial. Inúmeros outros exemplos poderiam ser citados. A distribuição binomial é a
primeira distribuição discreta de probabilidade, entre as distribuições já estudadas. A variável aleatória
X com distribuição de probabilidade binomial tem a seguinte função de probabilidade:

P (X = x) =
(

n

x

)
px(1 − p)n−x, x = 0,1, · · · , n e n ≥ 1, (3.12)

em que os parâmetros n e p referem-se, respectivamente, ao tamanho da amostra e a probabilidade de
sucesso de se obter um evento favorável em uma amostragem de 1 único elemento ao acaso da população.
O termo

(
n
x

)
é o coeficiente binomial definido por:(

n

x

)
= n!

x!(n − x)! .

A probabilidade de sucesso p, em amostras de tamanho n da população, ou seja, em n ensaios de Bernoulli,
deve permanecer constante e os sucessivos ensaios devem ser independentes. O parâmetro n em geral é
determinado pelo pesquisador e deve ser um inteiro maior ou igual a 1. Se n = 1, então a distribuição
binomial se especializa na distribuição Bernoulli. Assim, a distribuição binomial é a repetição de n
ensaios Bernoulli independentes e com probabilidade de sucesso constante. Os seguintes teoremas e lemas
são importantes, para a definição de alguns métodos que apareceram na sequência. Estes lemas serão
apresentados sem as provas.

Theorem 3.2 (Gênese). Seja X o número de sucessos em uma sequência de n ensaios Bernoulli com
probabilidade de sucesso p, ou seja,

X =
n∑

i=1
I(Ui ≤ p)

em que U1, U2,· · ·, Un são variáveis uniformes (0,1) i.i.d. e I(•) é uma função indicadora. Então, X tem
distribuição binomial (n, p).

Lemma 3.1 (Soma de binomiais). Se X1, X2, · · ·, Xk são variáveis aleatórias binomiais independentes
com (n1, p), · · ·, (nk, p), então

∑k
i=1 Xi tem distribuição binomial, com parâmetros (

∑k
i=1 ni, p).

3.4. DISTRIBUIÇÃO BINOMIAL 55

Lemma 3.2 (Tempo de Espera - Propriedade 1). Sejam G1, G2, · · · variáveis aleatórias geométricas
independentes e, X, o menor inteiro tal que

X+1∑
i=1

Gi > n.

Assim, X tem distribuição binomial (n, p).

As variáveis geométricas citadas no lema Lemma 3.2 são definidas a seguir. Se G tem distribuição
geométrica com probabilidade de sucesso constante p ∈ (0,1), então, a função de probabilidade é:

P (G = g) = p(1 − p)g−1, g = 1,2 · · · (3.13)

A geométrica é a distribuição do tempo de espera até a ocorrência do primeiro sucesso no g-ésimo evento,
numa sequência de ensaios Bernoulli independentes. Assim, supõe-se que venham a ocorrer g − 1 fracassos,
cada um com probabilidade de ocorrência constante 1 − p, antes da ocorrência de um sucesso no g-ésimo
ensaio, com probabilidade p. Finalmente, o segundo lema do tempo de espera pode ser anunciado por:

Lemma 3.3 (Tempo de Espera - Propriedade 2). Sejam E1, E2, · · · variáveis aleatórias exponenciais
i.i.d., e X o menor inteiro tal que

X+1∑
i=1

Ei

n − i + 1 > −ln(1 − p).

Logo, X tem distribuição binomial (n, p).

As propriedades especiais da distribuição binomial, descritas no teorema e nos lemas, formam a base para
dois algoritmos binomiais. Estes dois algoritmos são baseados na propriedade de que uma variável aleatória
binomial é á soma de n variáveis Bernoulli obtidas em ensaios independentes e com probabilidade de
sucesso constante p. O algoritmo binomial mais básico baseia-se na geração de n variáveis independentes
U(0,1) e no cômputo do total das que são menores ou iguais a p. Este algoritmo denominado por
Kachitvichyanukul and Schmeiser [1988] de BU é dado por:

1. Faça x = 0 e k = 0;
2. Gere u de uma U(0,1) e faça k = k + 1;
3. Se u ≤ p, então faça x = x + 1;
4. Se k < n vá para o passo 2;
5. Retorne x de uma binomial (n, p).

O algoritmo BU tem velocidade proporcional a n e depende da velocidade do gerador de números aleatórios,
mas possui a vantagem de não necessitar de variáveis de setup. O segundo algoritmo atribuído a Devroy
1980 [Devroy, 1980] é denominado de BG e é baseado no lema Lemma 3.2. O algoritmo BG pode ser
descrito por:

1. Faça y = 0, x = 0 e c = ln(1 − p);
2. Se c = 0, vá para o passo 6;
3. Gere u de uma U(0,1);
4. y = y + ⌊ln(u)/c⌋ + 1, em que ⌊•⌋ denotam a parte inteira do argumento •;
5. Se y ≤ n, faça x = x + 1 e vá para o passo 3;
6. Retorne x de uma binomial (n, p).

O algoritmo utilizado no passo 4 do algoritmo BG é baseado em truncar uma variável exponencial
G = ⌊ln(U)/c⌋ + 1 ∼ G(p) para gerar uma variável geométrica, conforme descrição feita por Devroy
[1986]. O tempo de execução desse algoritmo é proporcional a np, o que representa uma considerável
melhoria da performance. Assim, p > 0,5, pode-se melhorar o tempo de execução de BG explorando a
propriedade de que se X é binomial com parâmetro n e p, então n−X é binomial com parâmetros n e 1−p.

56 CHAPTER 3. VARIÁVEIS ALEATÓRIAS NÃO-UNIFORMES

Especificamente o que devemos fazer é substituir p pelo min(p,1 − p) e retornar x se p ≤ 1
2 ou retornar

n − x, caso contrário. A velocidade, então, é proporcional a n vezes o valor min(p,1 − p). A desvantagem
desse procedimento é que são necessárias várias chamadas do gerador de realizações de variáveis aleatórias
uniformes, até que um sucesso seja obtido e o valor x seja retornado. Uma alternativa a esse problema
pode ser conseguida se utilizarmos um gerador baseado na inversão da função de distribuição binomial.

Como já havíamos comentado em outras oportunidades o método da inversão é o método básico para
convertermos uma variável uniforme U em uma variável aleatória X, invertendo a função de distribuição.
Para uma variável aleatória contínua, temos o seguinte procedimento:

• Gerar um número uniforme u
• Retornar x = F −1(u)

O procedimento análogo para o caso discreto requer a busca do valor x, tal que:

F (x − 1) =
∑
i<x

P (X = i) < u ≤
∑
i≤x

P (X = i) = F (x).

A maneira mais simples de obtermos uma solução no caso discreto é realizarmos uma busca sequencial
a partir da origem. Para o caso binomial, este algoritmo da inversão, denominado de BINV, pode ser
implementado se utilizarmos a fórmula recursiva:


P (X = 0) = (1 − p)n

P (X = x) = P (X = x − 1) n−x+1
x

p
1−p

(3.14)

para x = 1,2, · · · ,n da seguinte forma:

1. Faça pp = min(p,1 − p), qq = 1 − pp, r = pp/qq, g = r(n + 1) e f = qqn;
2. Gere u de uma U(0,1) e faça x = 0 e F = f ;
3. Se F >= u, então vá para o passo 5;
4. Faça x = x + 1, f = f

(g

x
− r
)

, F = F + f e vá para o passo 3;
5. Se p ≤ 1

2 , então retorne x de uma binomial (n, p), senão retorne n − x de uma binomial (n, p).

A velocidade deste algoritmo é proporcional a n vezes o valor min(p, 1 − p). A vantagem desse algoritmo
é que apenas uma variável aleatória uniforme é gerada para cada variável binomial requerida. Um ponto
importante é o tempo consumido para gerar qqn é substancial e dois problemas potenciais podem ser
destacados. O primeiro é a possibilidade de underflow no cálculo de f = qqn, quando n é muito grande e,
o segundo, é a possibilidade do cálculo recursivo de f ser uma fonte de erros de arredondamento, que se
acumulam e que se tornam sérios na medida que n aumenta [Kachitvichyanukul and Schmeiser, 1988].
Devroy [1986] menciona que o algoritmo do tempo de espera BG baseado no lema Lemma 3.2 deve ser
usado no lugar de BINV para evitarmos esses fatos. Por outro lado, Kachitvichyanukul and Schmeiser
[1988] mencionam que basta implementar o algoritmo em precisão dupla que esses problemas são evitados.
Exemplificação de algoritmos para gerar realizações de
variáveis aleatórias binomiais binom(n, p).
Os algoritmos BU, BG e BINV foram implementados
Exemplificação de algoritmos para gerar realizações de
variáveis aleatórias binomiais binom(n, p).
Os algoritmos BU, BG e BINV foram implementados
import numpy as np
def bu(n, p):

x = 0
k = 0
while k < n:

3.4. DISTRIBUIÇÃO BINOMIAL 57

u = np.random.uniform(0.0,1.0,1)
k = k + 1
if u <= p:

x += 1
return(x)

def bg(n, p):
if p > 0.5:

pp = 1 - p
else:

pp = p
y = 0
x = 0
c = np.log(1 - pp)
if c < 0:

while y <= n:
u = np.random.uniform(0.0,1.0,1)
y += np.trunc(np.log(u) /c) + 1
if y <= n:
x += 1

if p > 0.5:
x = n - x

return x

def binv(n, p):
if p > 0.5:

pp = 1 - p
else:

pp = p
q = 1 - pp
f = q**n
r = pp / q
g = r * (n + 1)
u = np.random.uniform(0.0,1.0,1)
x = 0
Fx = f
while Fx < u:

x += 1
f *= (g / x - r)
Fx += f

if p > 0.5:
x = n - x

return x

gerador de uma amostra binomial n, p
recebe uma das três funções implementas
como argumento, size e prob
são os parâmetros da binomial e n é o
tamanho da amostra ser gerada
recebe bg por default
def rbinom(n, size, prob, func = bg):

58 CHAPTER 3. VARIÁVEIS ALEATÓRIAS NÃO-UNIFORMES

x = []
for i in range(n):

x.append(func(size, prob))
return x

Exemplo
prob = 0.5
size = 3
bu(size, prob)
bg(size, prob)
binv(size, prob)
n = 10000 # sample size
x = rbinom(n, size, prob, bg) # pode trocar bg por binv ou bu
graf = plt.hist(x,bins=size+1,color='#14e8f3',rwidth=0.95,alpha=0.7)

2

0

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

3000

3500

4000

Procedimentos de geração de números aleatórios poderiam ser apresentados para muitas outras distribuições
de probabilidades. Felizmente no python não temos este tipo de preocupação, pois estas rotinas já existem
e estão implementadas em linguagem não interpretada. Inclusive para os modelos considerados temos
rotinas prontas. Veremos uma boa parte delas na próxima seção.

3.5 Rotinas Python para Geração de Realizações de Variáveis
Aleatórias

Nesta seção, veremos alguns dos principais comandos Python para acessarmos os processos de geração
de realizações de variáveis aleatórias de diferentes modelos probabilísticos. Os modelos probabilísticos
contemplados pelo R estão apresentados na Tabela Table 3.1.

3.5. ROTINAS PYTHON PARA GERAÇÃO DE REALIZAÇÕES DE VARIÁVEIS ALEATÓRIAS 59

Table 3.1: Distribuições de probabilidades, nome Python (np.random.col2nome) e parâmetros (argumentos
da função) dos principais modelos probabilístico, sendo size o tamanho da amostra.

Distribuição Nome numpy Parâmetros
beta beta(a, b, size=None) a, b, size
binomial binomial(n, p, size=None) n, p,size
Cauchy Padrão standard_cauchy(size=None) size
qui-quadrado chisquare(df, size=None) df, size
exponencial exponential(scale=1.0,

size=None)
scale (1/lambda), size

F f(dfnum, dfden, size=None) dfnum, dfden, size
gama gamma(shape, scale=1.0,

size=None)
shape, scale (1/beta), size

geométrica geometric(p, size=None) p, size
hipergeométrica hypergeometric(ngood, nbad,

nsample, size=None)
ngood, nbad, nsample, size

log-normal lognormal(mean=0.0, sigma=1.0,
size=None)

mean, sigma, size

logística logistic(loc=0.0, scale=1.0,
size=None)

loc, scale, size

binomial negativa negative_binomial(n, p,
size=None)

n, p, size

normal normal(loc=0.0, scale=1.0,
size=None)

loc, scale, size

Poisson poisson(lam=1.0, size=None) lam, size
t de Student standard_t(df, size=None) df, size
uniform uniform(low=0.0, high=1.0,

size=None)
low, high, size

Weibull weibull(a, size=None) a, size

No Python, a biblioteca scipy.stats nos permite realizarmos os cálculos da função de probabilidade
(caso discreto) com o comando, por exemplo, para a binomial, de sp.stats.binom.pmf(x, n,p). Neste
caso, o scipy foi importado com sp e pmf é acrônimo de probability mass function, do inglês. Para o
caso contínuo, usamos pdf. Para a função de distribuição, usamos cdf, sejam as variáveis contínuas
ou discretas. Para a inversa da função de distribuição, usamos ppf, percent point function. Neste caso
o primeiro argumento é o valor da probabilidade acumulada. No caso particular deste capítulo temos
interesse na geração de realizações de variáveis aleatórias. Existem ainda modelos probabilísticos não
centrais, para os quais devemos utilizar o parâmetro de não-centralidade (ncp). Para mais detalhes, visite
a página do scipy.stats clicando aqui.

O uso destas funções para gerarmos números aleatórios é bastante simples. Se, por exemplo, quisermos
gerar dados de uma distribuição beta com parâmetros α = 1 e β = 2, podemos utilizar o programa
ilustrativo apresentado na sequência. Podemos utilizar funções semelhantes a função beta, de acordo
com a descrição feita na Tabela Table 3.1, para gerarmos n dados de qualquer outra função densidade ou
função de probabilidade. Este procedimento é mais eficiente do que utilizarmos nossas próprias funções,
pois estas funções foram implementadas em geral em C. Se para algum modelo particular desejarmos
utilizar nossas próprias funções e se iremos chamá-las milhares ou milhões de vezes é conveniente que
implementemos em C e as associemos ao Python. A forma de associarmos as rotinas escritas em C ao
Python foge do escopo deste material e por isso não explicaremos como fazê-lo.
n = 50000
alpha = 1.0

https://docs.scipy.org/doc/scipy/reference/stats.html

60 CHAPTER 3. VARIÁVEIS ALEATÓRIAS NÃO-UNIFORMES

beta = 2.0
x = np.random.beta(alpha, beta, n)
graf = plt.hist(x, bins='auto', color='#14e8f3',rwidth=0.95,alpha=0.7)
np.mean(x)
alpha/(alpha+beta) # verdadeira
np.var(x)
alpha*beta/((alpha+beta)**2*(alpha+beta+1)) # verdadeira

np.float64(0.3330860156881842)

0.3333333333333333

np.float64(0.05555526120029795)

0.05555555555555555

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

1250

1500

1750

2000

3.6 Exercícios
1. Seja f(x) = 3x2 uma função densidade de uma variável aleatória contínua X com domínio definido

no intervalo [0; 1]. Aplicar o método da inversão e descrever um algoritmo para gerar realizações de
variáveis aleatórias dessa densidade. Implementar em R e gerar uma amostra de tamanho n = 1.000.
Estimar os quantis 1%, 5%, 10%, 50%, 90%, 95% e 99%. Confrontar com os quantis teóricos.

2. Os dados a seguir referem-se ao tempo de vida, em dias, de n = 40 insetos. Considerando que a
distribuição do tempo de vida é a exponencial e que o parâmetro λ pode ser estimado pelo estimador
de máxima verossimilhança λ̂ = 1/X̄, em que X̄ =

∑n
i=1 Xi/n, obter o intervalo de 95% de confiança

utilizando o seguinte procedimento: i) gerar uma amostra da exponencial de tamanho n = 40,
utilizando o algoritmo rexpon, considerando o parâmetro igual a estimativa obtida; ii) determinar
a estimativa da média µ = 1/λ por X̄ nesta amostra simulada de tamanho n = 40; iii) repetir
1.000 vezes os passos (i) e (ii) e armazenar os valores obtidos; iv) ordenar as estimativas e tomar os
quantis 2,5% e 97,5%. Os valores obtidos são o intervalo de confiança almejado, considerando como
verdadeira a densidade exponencial para modelar o tempo de vida dos insetos. Este procedimento é
denominado de bootstrap paramétrico. Os dados em dias do tempo de vida dos insetos são:

3.6. EXERCÍCIOS 61

8,521 4,187 2,516 1,913 8,780 5,912 0,761 12,037
2,604 1,689 5,626 6,361 5,068 3,031 1,128 1,385
12,578 2,029 0,595 0,445 3,601 7,829 1,383 1,934
0,864 8,514 4,977 0,576 1,503 0,475 1,041 0,301
1,781 2,564 5,359 2,307 1,530 8,105 3,151 8,628

Repetir esse processo, gerando 100.000 amostras de tamanho n = 40. Compare os resultados e
verifique se o custo adicional de ter aumentado o número de simulações compensou a possível maior
precisão obtida.

3. Gerar uma amostra de n = 5.000 realizações de variáveis normais padrão utilizando as aproximações:
X = [U0,135 −(1 − U)0,135]/ 0,1975 e da soma de 12 ou mais variáveis uniformes (Ui ∼ U(0,1))
independentes, dada por X =

∑12
i Ui − 6. Confrontar os quantis 1%, 5%, 10%, 50%, 90%, 95% e

99% esperados da distribuição normal com os estimados dessa distribuição. Gerar também uma
amostra de mesmo tamanho utilizando o algoritmo Polar-Box-Müller. Estimar os mesmos quantis
anteriores nesta amostra e comparar com os resultados anteriores.

4. Se os dados do exercício 2 pudessem ser atribuídos a uma amostra aleatória da distribuição log-
normal, então estimar os parâmetros da log-normal e utilizar o mesmo procedimento descrito naquele
exercício, substituindo apenas a distribuição exponencial pela log-normal para estimar por intervalo
a média populacional. Para estimar os parâmetros da log-normal utilizar o seguinte procedimento:
a) transformar os dados originais, utilizando X∗

i = ln(Xi); b) determinar a média e o desvio padrão
amostral dos dados transformados - estas estimativas são as estimativas de µ e σ. Utilizar estas
estimativas para gerar amostras log-lognormais. Realizar os mesmos procedimentos descritos para
exponencial, confrontar os resultados e discutir a respeito da dificuldade de se tomar uma decisão
da escolha da distribuição populacional no processo de inferência. Como em situações reais nunca se
sabe de qual distribuição os dados são provenientes com precisão, então você teria alguma ideia de
como fazer para determinar qual a distribuição que melhor modela os dados do tempo de vida dos
insetos? Justificar sua resposta adequadamente com os procedimentos numéricos escolhidos.

5. Fazer reamostragens com reposição a partir da amostra do exercício 2 e estimar o intervalo de 95%
para a média populacional, seguindo os passos descritos a seguir e utilizar um gerador de números
uniformes para determinar quais elementos amostrais devem ser selecionados: i) reamostrar com
reposição os n = 40 elementos da amostra original e compor uma nova amostra por: X∗

i ; ii) calcular
a média desta nova amostra por X̄∗ =

∑n
i=1 X∗

i /n; iii) armazenar este valor e repetir os passos (i)
e (ii) B − 1 vezes; iv) agrupar os valores com o valor da amostra original; e v) ordenar os valores
obtidos e determinar os quantis 2,5% e 97,5% desse conjunto de B valores. Escolher B = 1.000
e B = 100.000 e confrontar os resultados obtidos com os obtidos nos exercícios anteriores para a
distribuição exponencial e log-normal. Os resultados que estiverem mais próximos deste resultado
devem fornecer um indicativo da escolha da distribuição mais apropriada para modelar o tempo de
vida de insetos. Este procedimento sugerido neste exercício é o bootstrap não-paramétrico. A sua
grande vantagem é não precisar fazer suposição a respeito da distribuição dos dados amostrais.

6. Uma importante relação para obtermos intervalos de confiança para a média de uma distribuição
exponencial, f(x) = λe−λx, refere-se ao fato de que a soma de n variáveis exponenciais com parâmetro
λ é igual a uma gama f(y) = 1

λΓ(α) (y/β)α−1
e− y

β com parâmetros α = n e β = 1/λ. Assim, assumir
que os dados do exercício 2 têm distribuição exponencial com parâmetro λ estimado pelo recíproco
da média amostral, ou seja, β̂ = 1/X̄. Considerando que a variável X tem distribuição gama padrão
com parâmetro α = n, então obtenha Y = β̂X = X/λ̂. Neste caso Y |β̂ tem distribuição da soma
de n variáveis exponenciais, ou seja, distribuição gama com parâmetros α = n e β = β̂. Como
queremos a distribuição da média, devemos obter a transformação Ȳ = Y/n. Gerar amostras de
tamanho n = 1.000 e n = 100.000 e estimar os quantis 2,5% e 97,5% da distribuição de Ȳ , em cada

62 CHAPTER 3. VARIÁVEIS ALEATÓRIAS NÃO-UNIFORMES

uma delas. Confrontar os intervalos de confiança, dessa forma obtidos, com os do exercício 2. Quais
são as suas conclusões? Qual é a vantagem de utilizar a distribuição gama?

7. Duas amostras binomiais foram realizadas em duas (1 e 2) diferentes populações. Os resultados
do número de sucesso foram y1 = 2 e y2 = 3 em amostras de tamanho n1 = 12 e n2 = 14,
respectivamente, de ambas as populações. Estimar os parâmetros p1 e p2 das duas populações por:
p̂1 = y1/n1 e p̂2 = y2/n2. Para testarmos a hipótese H0 : p1 = p2 ou H0 : p1 − p2 = 0, podemos
utilizar o seguinte algoritmo bootstrap paramétrico: a) utilizar p̂1 e p̂2 para gerarmos amostras
de tamanho n1 e n2 de ambas as populações; b) estimar p̂1j = y1j/n1 e p̂2j = y2j/n2 na j-ésima
repetição desse processo; c) calcular dj = p̂1j − p̂2j ; d) repetir os passos de (a) a (c) B − 1 vezes;
e) unir com o valor da amostra original; f) ordenar os valores e obter os quantis 2,5% e 97,5% da
distribuição bootstrap de dj ; e g) se o valor hipotético 0 estiver contido nesse intervalo, não rejeitar
H0, caso contrário, rejeitar a hipótese de igualdade das proporções binomiais das duas populações.

Chapter 4

Geração de Amostras Aleatórias de
Variáveis Multidimensionais

Os modelos multivariados ganharam grande aceitação no meio científico em função das facilidades
computacionais e do desenvolvimento de programas especializados nesta área. Os fenômenos naturais
são em geral multivariados. Um tratamento aplicado em um ser, a um solo ou a um sistema não afeta
isoladamente apenas uma variável, e sim todas as variáveis. Ademais, as variáveis possuem relações entre si
e qualquer mudança em uma ou algumas delas, afeta as outras. Assim, a geração de realizações de vetores
ou matrizes aleatórias é um assunto que não pode ser ignorado. Vamos neste capítulo disponibilizar ao
leitor mecanismos para gerar realizações de variáveis aleatórias multidimensionais.

4.1 Introdução
Os processos para gerarmos variáveis aleatórias multidimensionais são muitas vezes considerados difíceis
pela maioria dos pesquisadores. Uma boa parte deles, no entanto, pode ser realizada no Python com
apenas uma linha de comando. Embora tenhamos estas facilidades, nestas notas vamos apresentar detalhes
de alguns processos para gerarmos dados dos principais modelos probabilísticos multivariados como, por
exemplo, a normal multivariada, a Wishart e a Wishart invertida, a t de Student multivariada e algumas
outras distribuições.

Uma das principais características das variáveis multidimensionais é a correlação entre seus componentes.
A importância destes modelos é praticamente indescritível, mas podemos destacar a inferência paramétrica,
a inferência bayesiana, a estimação de regiões de confiança, entre outras. Vamos abordar nas próximos
seções formas de gerarmos realizações de variáveis aleatórias multidimensionais para determinados modelos
utilizando o Python para implementarmos as rotinas ou para utilizarmos as rotinas pré-existentes. Nossa
aparente perda de tempo, descrevendo funções menos eficientes do que as pré-existentes no Python,
tem como razão fundamental permitir ao leitor ir além de simplesmente utilizar rotinas previamente
programadas por terceiros. Se o leitor ganhar, ao final da leitura deste material, a capacidade de produzir
suas próprias rotinas e entender como as rotinas pré-existentes funcionam, nosso objetivo terá sido
alcançado.

4.2 Distribuição Normal Multivariada
A função densidade de probabilidade normal multivariada de um vetor aleatório X é dada por:

63

64CHAPTER 4. GERAÇÃO DE AMOSTRAS ALEATÓRIAS DE VARIÁVEIS MULTIDIMENSIONAIS

fX(x) = (2π)− p
2 |Σ|−

1
2 exp

{
−1

2(x − µ)⊤Σ−1(x − µ)
}

(4.1)

em que µ e Σ são, respectivamente, o vetor de média e a matriz de covariâncias, simétrica e positiva
definida, e p é a dimensão do vetor aleatório X.

Um importante resultado diz respeito a combinações lineares de variáveis normais multivariadas e será
apresentado no seguinte teorema.

Theorem 4.1 (Combinações Lineares). Considere o vetor aleatório normal multivariado X =
[X1, X2, · · · , Xp]⊤ com média µ e covariância Σ e considere C uma matriz (p × p) de posto p, então
a combinação linear Y = CX (p × 1) tem distribuição normal multivariada com média µY = Cµ e
covariância ΣY = CΣC⊤.

Proof. Se C possui posto p, então existe C−1 e, portanto,

X = C−1Y.

O Jacobiano da transformação é J = |C|−1 e a distribuição de Y é dada por fY(y) = fX(x)|J |. Se X
tem distribuição normal multivariada, então

fY(y) =(2π)−p/2 |Σ|−
1
2 exp

{
−1

2(C−1y − µ)⊤Σ−1(C−1y − µ)
}

|C|−1

=(2π)−p/2|C|−1/2 |Σ|−
1
2 |C|−1/2

× exp
{

−1
2(y − Cµ)⊤ (C⊤)−1 Σ−1C−1(y − Cµ)

}

=(2π)−p/2 ∣∣CΣC⊤∣∣− 1
2 exp

{
−1

2(y − Cµ)⊤ (CΣC⊤)−1 (y − Cµ)
}

que é a densidade normal multivariada do vetor aleatório Y com média µY = Cµ e covariância ΣY =
CΣC⊤. Portanto combinações lineares de variáveis normais multivariadas são normais multivariadas.

O teorema Theorem 4.1 nos fornece o principal resultado para gerarmos dados de uma normal multivariada.
Assim, como nosso objetivo é gerar dados de uma amostra normal multivariada com vetor de médias µ
e matriz de covariâncias Σ pré-estabelecidos, devemos seguir os seguintes procedimentos. Inicialmente
devemos obter a matriz raiz quadrada de Σ, representada por Σ1/2. Para isso, vamos considerar a
decomposição espectral da matriz de covariâncias dada por Σ = PΛP⊤. Logo, podemos definir a matriz
raiz quadrada de Σ por Σ1/2 = PΛ1/2P⊤, em que Λ é a matriz diagonal dos autovalores, Λ1/2 é a matriz
diagonal contendo a raiz quadrada destes elementos e P é a matriz de autovetores, cada um destes vetor
disposto em uma de suas colunas. Desta decomposição facilmente podemos observar que Σ = Σ1/2Σ1/2.

Assim, podemos utilizar o seguinte método para gerarmos uma realização p-variada de uma normal
multivariada. Inicialmente devemos gerar um vetor aleatório Z = [Z1, Z2, · · ·, Zp]⊤ de p variáveis normais
padrão independentes utilizando, por exemplo, o algoritmo de Box-Müller. Isto que dizer que µZ = 0 e
que Cov(Z) = I. Este vetor deve sofrer a seguinte transformação linear:

Y = Σ1/2Z + µ. (4.2)

4.2. DISTRIBUIÇÃO NORMAL MULTIVARIADA 65

De acordo com o teorema Theorem 4.1, o vetor Y possui distribuição normal multivariada com média
µY = Σ1/2µZ+µ = µ e matriz de covariâncias Σ1/2IΣ1/2 = Σ. Este será o método que usaremos para obter
a amostra p-dimensional de tamanho n de uma normal multivariada com média µ e covariância Σ. Para
obtermos a matriz raiz quadrada no Python, podemos utilizar o comando para a obtenção da decomposição
espectral np.linalg.svd() ou alternativamente o comando linalg.cholesky(a,/,*,upper=False), que
retorna o fator de Cholesky de uma matriz positiva definida, que na verdade é um tipo de raiz quadrada.
A decomposição do valor singular neste caso se especializa na decomposição espectral, pois a matriz Σ
é simétrica. Geraremos um vetor de variáveis aleatórias normal padrão independentes Z utilizando o
comando np.random.normal(). Em seguida a transformação Equation 4.2 é realizada.

Vamos ilustrar e apresentar o programa de geração de variáveis normais multivariada para um caso
particular bivariado (p = 2) e com vetor de médias µ = [10, 50]⊤ e matriz de covariâncias dada por:

Σ =
[

4 1
1 1

]
.

O programa resultante é dado por:
Função Python para gerar n vetores aleatórios normais
multivariados com vetor de médias mu e covariância sigma.
o resultado é uma matriz n x p, sendo p o número de variáveis
import numpy as np
import matplotlib.pyplot as plt
def rnormmv(n, mu, sigma):

p = sigma.shape[0]
u, d, vt = np.linalg.svd(sigma)
sigmaroot = u @ np.diag(d**0.5) @ vt
for i in range(n):

z = np.random.normal(0,1,p)
if i == 0:

x = sigmaroot @ z + mu
else:

li = sigmaroot @ z + mu
x = np.vstack((x, li))

return x

Exemplo de uso
n = 10000
sigma = np.array([[4,1],[1,1]])
mu = [10,50]
x = rnormmv(n, mu, sigma)
np.mean(x, axis = 0)
np.cov(x,rowvar = False)
a = x[:,0]
b = x[:,1]
plt.scatter(a, b, s = 3, c = '#070808', alpha = 0.5)
plt.xlabel('x1')
plt.ylabel('x2')
plt.show()

array([9.9758766 , 49.98663703])

array([[3.82820664, 0.94211224],
[0.94211224, 0.99422806]])

66CHAPTER 4. GERAÇÃO DE AMOSTRAS ALEATÓRIAS DE VARIÁVEIS MULTIDIMENSIONAIS

Text(0.5, 0, 'x1')

Text(0, 0.5, 'x2')

4 6 8 10 12 14 16 18
x1

46

47

48

49

50

51

52

53

54

x2

No python temos o gerador do numpy, random.multivariate_normal(mean, cov, size=None,
check_valid='warn', tol=1e-8) para gerarmos dados da distribuição normal multivariada. No script
a seguir aplicamos a nossa função e a do numpy para gerarmos um número grande de observações e
comparamos o desempenho em termos de tempo de processamento. A função do numpy protege o processo,
com, por exemplo verificando se a matriz de covariâncias é positiva definida. Em nossa função não
utilizamos nenhuma proteção, embora seja possível fazer isso.
Comparativo de desempenho dos dois geradores de
normais multivariadas
from datetime import datetime
n = 60000
sigma = np.array([[4,1],[1,1]])
mu = [10, 50]
t1 = datetime.now()
x = rnormmv(n, mu, sigma)
t2 = datetime.now()
trnm = t2-t1
print('tempo médio da rnormmv: ',trnm.microseconds / n)
t1 = datetime.now()
x = np.random.multivariate_normal(mu, sigma, size=n)
t2 = datetime.now()
tnp = t2-t1
print('tempo médio da numpy: ',tnp.microseconds / n)
tempo relativo
print('numpy é mais rápido ',trnm.microseconds / tnp.microseconds ,' vezes')

tempo médio da rnormmv: 6.167566666666667
tempo médio da numpy: 0.04126666666666667
numpy é mais rápido 149.45638126009692 vezes

4.2. DISTRIBUIÇÃO NORMAL MULTIVARIADA 67

A rotina do numpy foi muitas vezes superior a nossa implementação. Isso em parte é devido ao fato de
estar compilada e, talvez, também ao possível método utilizado para obter a matriz raiz quadrada. A
troca da matriz raiz quadrada de svd para Cholesky ou pela decomposição espectral, poderia ser feita e
o desempenho médio dos procedimentos avaliados, para definirmos a melhor estratégia de implementação.
Fizemos uma alteração na nossa implementação. Colocamos um argumento com uma das três opções,
para que o usuário escolha qual método utilizar. A obtenção da raiz quadrada foi implementada em uma
função separada.
Função Python para gerar n vetores aleatórios normais
multivariados com vetor de médias mu e covariância sigma.
o resultado é uma matriz n x p, sendo p o número de variáveis
def sigmaroot(sigma, metodo='chol'):

if metodo == 'svd':
u, d, vt = np.linalg.svd(sigma)
root = u @ np.diag(d**0.5) @ vt

elif metodo == 'eig':
d, u = np.linalg.eig(sigma)
root = u @ np.diag(d**0.5) @ np.transpose(u)

else:
root = np.linalg.cholesky(sigma)

return root

São métodos válidos: 'chol', 'svd' e 'eig'
def rnormmv_2(n, mu, sigma, meth ='chol'):

p = sigma.shape[0]
sigmar = sigmaroot(sigma, meth)
for i in range(n):

z = np.random.normal(0,1,p)
if i == 0:

x = sigmar @ z + mu
else:

li = sigmar @ z + mu
x = np.vstack((x, li))

return x

O comparativo entre eles foi apresentado no seguinte script:
Comparativo de desempenho dos dois geradores de
normais multivariadas
n = 60000
sigma = np.array([[4,1],[1,1]])
mu = [10,50]
t1 = datetime.now()
x = rnormmv_2(n, mu, sigma,'svd')
t2 = datetime.now()
tsvd = t2-t1
t1 = datetime.now()
x = rnormmv_2(n, mu, sigma,'eig')
t2 = datetime.now()
teig = t2-t1
t1 = datetime.now()
x = rnormmv_2(n, mu, sigma,'chol')
t2 = datetime.now()
tchol = t2-t1

68CHAPTER 4. GERAÇÃO DE AMOSTRAS ALEATÓRIAS DE VARIÁVEIS MULTIDIMENSIONAIS

t1 = datetime.now()
x = np.random.multivariate_normal(mu, sigma, size=n)
t2 = datetime.now()
tnp = t2-t1
print('tempo médio da svd: ',tsvd.microseconds / n)
print('tempo médio da eig: ',teig.microseconds / n)
print('tempo médio da chol: ',tchol.microseconds / n)
print('tempo médio da numpy: ',tnp.microseconds / n)
tempo relativo
print('numpy é mais rápido ',tsvd/tnp ,' vezes que svd')
print('numpy é mais rápido ',teig/tnp ,' vezes que eig')
print('numpy é mais rápido ',tchol/tnp,' vezes que chol')

tempo médio da svd: 5.20085
tempo médio da eig: 5.958333333333333
tempo médio da chol: 5.476483333333333
tempo médio da numpy: 0.042633333333333336
numpy é mais rápido 512.9206411258796 vezes que svd
numpy é mais rápido 530.6880375293198 vezes que eig
numpy é mais rápido 519.3858483189993 vezes que chol

Embora nossa função seja relativamente rápida, levando entre 2 e 14 micro segundos para rodar cada
observação bivariada neste caso, ela ainda foi bem menos eficiente que rotina numpy. A compilação é
fundamental em relação à interpretação. É extremamente simples gerarmos dados de normais multivariadas
utilizando a função numpy, o que nos desobriga de programar os nossos próprios geradores aleatórios.
Reiteramos que fizemos isso, pois queremos que o nosso leitor e nosso estudante consigam desvendar o que
está por trás de cada método deste e também que consiga desenvolver suas habilidades em programação,
implementando rotinas sofisticadas como estas.

4.3 Distribuição Wishart e Wishart Invertida
As distribuições Wishart e Wishart invertida são relacionadas às distribuições de matrizes de somas de
quadrados e produtos não-corrigidas W obtidas de amostras de tamanho n − 1 da distribuição normal
multivariada com média 0. Considere Xj = [X1, X2, · · ·, Xp]⊤ o j-ésimo vetor (j = 1, 2, · · ·, ν) de uma
amostra aleatória de tamanho ν de uma normal com média 0 e covariância Σ, então a matriz aleatória

W =
n−1∑
j=1

XjX⊤
j

possui distribuição Wishart com n − 1 graus de liberdade e parâmetro Σ (matriz positiva definida).

Da mesma forma, se temos uma amostra aleatória de tamanho n de uma distribuição normal multivariada
com média µ e covariância Σ, a distribuição da matriz aleatória

W =
n∑

j=1
(Xj − X̄)(Xj − X̄)⊤

é Wishart com ν = n − 1 graus de liberdade e parâmetro Σ.

A função densidade Wishart de uma matriz aleatória W de somas de quadrados e produtos e representada
por Wp(ν,Σ) é definida por:

4.3. DISTRIBUIÇÃO WISHART E WISHART INVERTIDA 69

fW(w|ν,Σ)= |Σ|−ν/2|w|(ν−p−1)/2

2νp/2πp(p−1)/4
p∏

i=1
Γ
(

ν − i + 1
2

) exp
{

−
tr
(
Σ−1w

)
2

}
(4.3)

em que Γ(x) =
∫∞

0 tx−1e−xdt é função gama.

Assim, para gerarmos variáveis Wishart com parâmetros n − 1 graus liberdade inteiro e matriz Σ positiva
definida, podemos utilizar um gerador de amostras aleatórias normais multivariadas e obter a matriz de
somas de quadrados e produtos amostrais. Esta matriz será uma realização de uma variável aleatória
Wishart, que é uma matriz de dimensão p × p. A seguinte função pode ser utilizada para obtermos
realizações aleatórias de uma Wishart:
Exemplificação para gerarmos matrizes de somas de quadrados e produtos
aleatórias W com distribuição Wishart(nu, Sigma), nu = n - 1
utiliza o random.multivariate_normal para gerar normais multivariadas.
def rwishart(nu, sigma):

p = sigma.shape[0]
mu = np.full(p, 0)
x = np.random.multivariate_normal(mu, sigma, size=nu + 1)
w = nu * np.cov(x, rowvar=False)
return w

Exemplo de uso
sigma = np.array([[4, 1], [1, 1]])
nu = 5
w = rwishart(nu, sigma)
print(w)

[[7.05079726 3.09190124]
[3.09190124 5.36923849]]

Outra distribuição relacionada que aparece frequentemente na inferência multivariada é a Wishart invertida.
Considere W uma matriz aleatória Wp(ν, Σ), então a distribuição de S = W−1, dada pela função densidade

fS(s|ν,Σ)= |Σ−1|ν/2|s|−(ν+p+1)/2

2νp/2πp(p−1)/4
p∏

i=1
Γ
(

ν − i + 1
2

) exp
{

−
tr
(
Σ−1s−1)

2

}
(4.4)

é a Wishart invertida que vamos representar por W −1
p (ν, Σ).

Se quisermos gerar uma matriz aleatória de uma distribuição Wishart invertida em vez de uma Wishart
precisamos simplesmente realizar a transformação S = W−1. Assim, vamos alterar o programa anterior
para gerar simultaneamente realizações aleatórias de distribuição Wishart e Wishart invertida. É
importante salientar que em nossa notação os parâmetros da Wishart invertida são aqueles da Wishart.
Isto é relevante, pois alguns autores apresentam os parâmetros da Wishart invertida e não da Wishart e
devemos estar atentos para este fato, senão geraremos variáveis aleatórias com densidades diferentes.
Exemplificação para gerarmos matrizes de somas de quadrados e produtos
aleatórias W com distribuição Wishart(nu, Sigma), nu = n - 1
utiliza o pacote mvtnorm para gerar amostras normais.
Exemplificação para gerarmos matrizes de somas de quadrados e produtos
aleatórias W com distribuição Wishart(nu, Sigma), nu = n - 1
e Wishart invertida

70CHAPTER 4. GERAÇÃO DE AMOSTRAS ALEATÓRIAS DE VARIÁVEIS MULTIDIMENSIONAIS

def rw_wi(nu, sigma, wi = True):
p = sigma.shape[0]
mu = np.full(p, 0)
x = np.random.multivariate_normal(mu, sigma, size=nu+1)
w = nu * np.cov(x, rowvar=False)
if wi:

iw = np.linalg.pinv(w)
res = {'W': w, 'WI': iw}
return res

else:
return w

Exemplo de uso
sigma = np.array([[4, 1], [1, 1]])
nu = 5
wi = True
res = rw_wi(nu, sigma, wi)
print('Ambas, W e WI', res)
wi = False
res = rw_wi(nu, sigma, wi)
print('Só a Wishart: ', res)

Ambas, W e WI {'W': array([[4.0581762 , 1.31624891],
[1.31624891, 5.33421115]]), 'WI': array([[0.26785352, -0.06609448],
[-0.06609448, 0.20377836]])}

Só a Wishart: [[51.35506656 9.39105554]
[9.39105554 5.37679542]]

Um aspecto importante que precisamos mencionar é sobre a necessidade de gerarmos variáveis Wishart ou
Wishart invertida com graus de liberdade reais. Para isso podemos utilizar o algoritmo descrito por Smith
and Hocking [1972]. Considere a decomposição da matriz Σ dada por Σ = Σ1/2Σ1/2, que utilizaremos
para realizarmos uma transformação na matriz aleatória gerada, que de acordo com propriedades de
matrizes Wishart, será Wishart.

Devemos inicialmente construir uma matriz triangular inferior T = [tij] (i,j = 1, 2, · · ·, p), com
tii ∼

√
χ2

ν+1−i e tij ∼ N(0,1) se i > j e tij = 0 se i < j. Na sequência devemos obter a matriz Γ = TT⊤,
que possui distribuição Wp(ν, I). Desta forma obteremos W = Σ1/2ΓΣ1/2 com a distribuição desejada,
ou seja, com distribuição Wp(ν,Σ). Fica claro que com esse algoritmo podemos gerar variáveis Wishart
com graus de liberdade reais ou inteiros.
Função mais eficiente para gerarmos matrizes de somas de quadrados
e produtos aleatórias W com distribuição Wishart(nu, Sigma) e
Wishart invertida WI(nu, Sigma)
def rwwi_sh(nu, sigma, wi = True):

tip = type(sigma)
if tip is int or tip is float:

p = 1
else:

p = sigma.shape[0]
df = np.flip(np.arange(nu - p + 1, nu + 1, 1))
if p > 1:

t = np.diag(np.random.chisquare(df, p)**0.5)
t[np.tril_indices(t.shape[0], -1)]=np.random.normal(0,1,int(p*(p-1)/2))

4.3. DISTRIBUIÇÃO WISHART E WISHART INVERTIDA 71

s = np.linalg.cholesky(sigma)
else:

t = np.random.chisquare(df)**0.5
s = sigma**0.5

if tip is int or tip is float:
w = s**2 * t**2

else:
w = s @ t @ np.transpose(t) @ np.transpose(s)

if wi:
if tip is int or tip is float:

iw = 1 / w
else:

iw = np.linalg.pinv(w)
res = {'W': w, 'WI': iw}
return res

else:
return w

Exemplo de uso
sigma = np.array([[4, 1], [1, 1]])
nu = 5
wi = True
res = rwwi_sh(nu, sigma, wi)
print('Ambas, W e WI', res)
wi = False
res = rwwi_sh(nu, sigma, wi)
print('Só a Wishart: ', res)

Ambas, W e WI {'W': array([[24.32404115, 11.15794726],
[11.15794726, 6.9826559]]), 'WI': array([[0.15398403, -0.24605906],
[-0.24605906, 0.53640249]])}

Só a Wishart: [[27.25907006 3.40843415]
[3.40843415 2.53724148]]

Vamos chamar a atenção para alguns fatos sobre esta função, pois utilizamos alguns coman-
dos e recursos não mencionados até o presente momento. Inicialmente utilizamos o comando
np.diag(np.random.chisquare(df, p)**0.5) para preencher a diagonal da matriz T com realizações
de variáveis aleatórias qui-quadrado e em seguida do método diag para transformar o vetor em uma
matriz diagonal.

Outro aspecto interessante que merece ser mencionado é o uso do fator de Cholesky no lugar de obter
a matriz raiz quadrada de Σ. O fator de Cholesky utiliza a decomposição Σ = SS⊤, em que S é uma
matriz triangular inferior. O Python, por meio da função np.linalg.cholesky(sigma), retorna a matriz
S. Finalmente, se o número de variáveis é igual a 1, a distribuição Wishart se especializa na qui-quadrado
e a Wishart invertida na qui-quadrado invertida. Assim, quando p = 1 o algoritmo retornará variáveis
σ2X e 1/(σ2X) com distribuições proporcionais a distribuição qui-quadrado e qui-quadrado invertida,
respectivamente, sendo X uma variável qui-quadrado com ν graus de liberdade.

O processamento para o caso escalar foi controlado com o uso do if, pois operações matriciais não são
aplicáveis se os argumentos forem escalares inteiros ou float (reais).

72CHAPTER 4. GERAÇÃO DE AMOSTRAS ALEATÓRIAS DE VARIÁVEIS MULTIDIMENSIONAIS

4.4 Distribuição t de Student Multivariada
A família de distribuições elípticas é muito importante na multivariada e nas aplicações Bayesianas. A
distribuição t de Student multivariada é um caso particular desta família. Esta distribuição tem particular
interesse nos procedimentos de comparação múltipla dos tratamentos com alguma testemunha avaliada no
experimento. A função densidade do vetor aleatório X = [X1, X2, · · ·, Xp]⊤ ∈ Rp com parâmetros dados
pelo vetor de médias µ = [µ1, µ2, · · · , µp]⊤ ∈ Rp e matriz simétrica e positiva definida Σ (p × p) é

fX(x) =g((x − µ)⊤Σ−1(x − µ))
|Σ|1/2

=
Γ
(

ν+p
2
)

(πν)p/2Γ(ν/2)|Σ|1/2

[
1 + 1

ν
(x − µ)⊤Σ−1(x − µ)

]− ν+p
2

em que a função g é dada por

g(z) =
Γ
(

ν+p
2
)

(πν)p/2Γ(ν/2)

(
1 + z

ν

)−(ν+p)/2
.

A variável aleatória X tem média µ e matriz de covariâncias νΣ/(ν − 2) no caso de ν > 2.

Se efetuarmos a transformação Y = Σ−1/2(X − µ) obteremos a distribuição t multivariada esférica
simétrica, cuja densidade é dada por:

fY(y) =
Γ
(

ν+p
2
)

(πν)p/2Γ(ν/2)

[
1 + 1

ν
y⊤y

]− ν+p
2

. (4.5)

A variável aleatória Y terá vetor de médias nulo e covariâncias νI/(ν − 2) e a densidade terá contornos
esféricos de mesma probabilidade.

Vamos apresentar a forma geral para gerarmos variáveis aleatórias p-dimensionais t multivariada com ν
graus de liberdade e parâmetros µ e Σ. Seja um vetor aleatório Z com distribuição Np(0, I) e a variável
aleatória U com distribuição qui-quadrado com ν graus de liberdade, então o vetor aleatório Y, dado pela
transformação

Y =
√

ν
Z√
U

, (4.6)

possui distribuição t multivariada esférica com ν graus de liberdade. O vetor X obtido pela transformação
linear

X = Σ1/2Y + µ, (4.7)

possui distribuição t multivariada elíptica com ν graus de liberdade e parâmetros µ e Σ.

Devemos aplicar a transformação (Equation 4.7) n vezes a n diferentes vetores aleatórios Y e variáveis
U . Ao final deste processo teremos uma amostra de tamanho n da distribuição t multivariada almejada
com ν graus de liberdade. Assim, para gerarmos dados de uma t multivariada com dimensão p, graus de
liberdade ν (não necessariamente inteiro), vetor de média µ qualquer e matriz positiva definida Σ podemos
utilizar a seguinte função Python, substituindo na expressão (Equation 4.7) a matriz raiz quadrada pelo
fator de Cholesky F de Σ:
Função para gerarmos variáveis aleatórias t
multivariadas (n, mu, Sigma, nu).
def rtmult(n, mu=[0,0,0], sigma=np.identity(3), df = 1):

4.4. DISTRIBUIÇÃO T DE STUDENT MULTIVARIADA 73

f = np.linalg.cholesky(sigma)
p = sigma.shape[0]
x = np.random.multivariate_normal(np.zeros(p),np.identity(p),n)
q = (np.random.chisquare(df,n) / df)**0.5
x = x / q[:, np.newaxis] @ np.transpose(f)
x += np.tile(mu, n).reshape(n,p)
return x

Exemplo de uso
n = 3000
nu = 3
mu = [0,0]
sigma = np.identity(2)
x = rtmult(n, mu, sigma, nu)
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.suptitle('Distribuições t multivariadas')
ax1.scatter(x[:,0], x[:,1], s = 3, c = '#070808', alpha = 0.5)
ax1.set_xlabel('x1')
ax1.set_ylabel('x2')
mu = [10, 5]
sigma = np.array([[4, 1.9], [1.9,1]])
x = rtmult(n, mu, sigma, nu)
ax2.scatter(x[:,0], x[:,1], s = 3, c = '#070808', alpha = 0.5)
ax2.set_xlabel('x1')
ax2.set_ylabel('x2')
np.cov(x, rowvar = False)
nu * sigma

Text(0.5, 0.98, 'Distribuições t multivariadas')

Text(0.5, 0, 'x1')

Text(0, 0.5, 'x2')

Text(0.5, 0, 'x1')

Text(0, 0.5, 'x2')

array([[11.93907649, 5.58639671],
[5.58639671, 2.91987189]])

array([[12. , 5.7],
[5.7, 3.]])

74CHAPTER 4. GERAÇÃO DE AMOSTRAS ALEATÓRIAS DE VARIÁVEIS MULTIDIMENSIONAIS

10 0 10
x1

25

20

15

10

5

0

5

10

x2

0 50
x1

10

0

10

20

30

x2

Distribuições t multivariadas

Graus de liberdade reais positivos podem ser utilizados como argumento da função criada. Foram geradas,
no exemplo anterior, duas amostras aleatórias para ilustrar. Foram definidos para os parâmetros µ, Σ e ν,
os valores [0,, 0, 0]⊤, I3 e 3, respectivamente, como default. Podemos também utilizar a implementação
determinada pela função multivariate_t.rvs(mu, sigma, df n), da biblioteca scipy, para gerarmos
dados da distribuição t de Student multivariada.
from scipy.stats import multivariate_t
n = 5
X = multivariate_t.rvs([1.0, -0.5], [[2.1, 0.3], [0.3, 1.5]], df=3, size = n)
print(X)

[[1.83453904 -0.04665643]
[0.61547066 -0.42351571]
[3.53400917 0.11474699]
[2.24031733 -2.3241255]
[1.8376512 0.84591245]]

4.5 Outras Distribuições Multivariadas
Existem muitas outras distribuições multivariadas. Vamos mencionar apenas mais duas delas: a log-normal
e a normal contaminada multivariadas. A geração de um vetor aleatório de dimensão p com distribuição
log-normal multivariada é feita tomando-se o seguinte vetor Y = [exp(Z1), exp(Z2), · · ·, exp(Zp)]⊤, em
que Z ∼ Np(µ, Σ).
gerador de realizações de variáveis log-normal
multivariada com parâmetros mu e sigma
def rlgnormalmv(n, mu=np.zeros(3), sigma=np.identity(3)):

x = np.exp(np.random.multivariate_normal(mu,sigma,n))
return x

4.5. OUTRAS DISTRIBUIÇÕES MULTIVARIADAS 75

Exemplo de uso
n = 7
print(rlgnormalmv(n)) # lgnormalmv padrão

[[1.78290124 1.0333459 1.83717252]
[0.36201042 4.73290222 1.8653464]
[0.19736769 0.04221863 0.26430841]
[3.72074082 1.53495832 3.52605987]
[2.43920477 4.59650076 1.20886589]
[2.09388643 3.02869341 0.16943952]
[0.74785201 2.74693018 3.56925337]]

Para gerarmos realizações da normal contaminada multivariada consideramos a simulação de um vetor
aleatório X cuja densidade de probabilidade é dada por:

fX(x) =δ(2π)−p/2|Σ1|−1/2 exp
{

− (x − µ1)⊤Σ−1
1 (x − µ1)

2

}
+ (1 − δ)(2π)−p/2|Σ2|−1/2 exp

{
− (x − µ2)⊤Σ−1

2 (x − µ2)
2

}

em que Σi positiva definida, i = 1, 2 e 0 ≤ δ ≤ 1.
gerador de variáveis normal contaminada multivariada
com delta sendo a proporção de não-contaminantes: (0, 1)
def rncm(n, mu1, mu2, sig1, sig2, delta=0.8):

u = np.random.uniform(size=n)
p = sig1.shape[0]
n1 = len(u[u <= delta])
n2 = n - n1
x = np.zeros(n * p).reshape(n, p)
if (n1 > 0):

li = np.arange(n)[u <= delta]
x[li,:] = np.random.multivariate_normal(mu1, sig1, n1)

if (n2 > 0):
li = np.arange(n)[u > delta]
x[li,:] = np.random.multivariate_normal(mu2, sig2, n2)

return x

Exemplo
n = 20000
delta = 0.8
mu1 = np.zeros(2)
sig1 = np.identity(2)
mu2 = [-2, -2]
sig2 = np.array([[2, 1.4], [1.4, 1]])
x = rncm(n, mu1, mu2, sig1, sig2, delta)
plt.scatter(x[:,0], x[:,1], s = 3, c = '#070808', alpha = 0.5)
plt.show()

76CHAPTER 4. GERAÇÃO DE AMOSTRAS ALEATÓRIAS DE VARIÁVEIS MULTIDIMENSIONAIS

6 4 2 0 2 4
6

4

2

0

2

4

4.6 Exercícios
1. Gerar uma amostra de tamanho (n = 10) uma distribuição normal trivariada com vetor de médias

µ = [5,10, 15]⊤ e matriz de covariâncias

Σ =

 5 −1 2
−1 3 −2
2 −2 7

 .

Estimar a média e a covariância amostral. Repetir este processo 1.000 vezes e estimar a média das médias
amostrais e a média das matrizes de covariâncias amostrais. Estes valores correspondem exatamente aos
respectivos valores esperados? Se não, apresentar a(s) principal(is) causa(s).

2. A partir da alteração da função rnormmv que realizamos, comparar o tempo de processamento
médio quando for utilizado svd, eig ou cholesky que corresponde a um possível tipo de matriz
raiz quadrada de Σ. Verificar se houve melhoria no desempenho em relação ao tempo médio de
processamento de cada variável aleatória gerada, vetor p-dimensional. Testar isso usando modificando
n e p, pois só apresentamos o teste para um único valor de p e pequeno, p = 2.

3. Sabemos que variáveis Wishart possuem média νΣ. Apresentar um programa para verificar se o
valor esperado, ignorando o erro de Monte Carlo, é alcançado com o uso das funções apresentadas
para gerar variáveis Wishart. Utilizar 10.000 repetições de Monte Carlo. Isso seria uma forma
simples, embora não conclusiva, de checar se a função está realizando as simulações corretamente.
Serve ao menos para indicar a presença de erro, mas não garante a assertividade.

4. Implementar funções Python para gerarmos variáveis aleatórias log-normal e normal-contaminada
elípticas multivariadas.

Chapter 5

Algoritmos para Médias, Variâncias e
Covariâncias

Muitos algoritmos para o cálculo de médias, variâncias e covariâncias são imprecisos, podendo gerar
resultados finais contendo grandes erros. A necessidade de utilizarmos algoritmos eficientes para realizarmos
estas tarefas simples são evidentes e serão descritos neste capítulo.

5.1 Introdução
Felizmente o Python utiliza algoritmos precisos para cálculo da média, da variância e de covariância.
Vamos buscar esclarecer como a utilização de algoritmo ineficientes podem levar a resultados inconsistentes
e imprecisos. Nosso objetivo neste capítulo é apresentar os algoritmos eficientes para estimarmos estes
parâmetros quando as fórmulas convencionais podem falhar se utilizadas nos algoritmos diretamente.

Estes algoritmos eficientes são particularmente úteis quando os dados possuem grande magnitude ou
estão muito próximos de zero. Neste caso particular, algumas planilhas eletrônicas, como o Excel nas
suas versões mais antigas, podiam falhar [McCullough and Wilson, 1999]. O conhecimento de algoritmos
que conduzirão a maiores precisões numéricas pode levar o pesquisador a não cometer os mesmos erros
encontrados em alguns softwares.

5.2 Algoritmos Univariados
A ideia básica de utilizarmos algoritmos para média, para a soma de potências dos desvios em relação
a média ou para soma de produtos de desvios é aplicarmos recursivamente as fórmulas existentes. Se
desejamos, por exemplo, obter a média de n observações, podemos inicialmente calcular a média da
primeira observação, que é a própria. Em um segundo estágio, propor uma expressão para atualizarmos a
média da primeira observação, contemplando a segunda e assim sucessivamente. O mesmo procedimento
de atualização é aplicado às variâncias ou às covariâncias, no caso de termos mais de uma variável.

Para uma amostra de tamanho n dada por X1, X2, · · ·, Xn, a média e a variância amostral convencionais
são obtidas, respectivamente, por:

X̄. =

n∑
i=1

Xi

n
, (5.1)

77

78 CHAPTER 5. ALGORITMOS PARA MÉDIAS, VARIÂNCIAS E COVARIÂNCIAS

e

S2 = 1
n − 1


n∑

i=1
X2

i −

(
n∑

i=1
Xi

)2

n

 . (5.2)

Alguns algoritmos existentes procuraram melhorar os algoritmos dos livros textos que são as fórmulas das
equações (Equation 5.1 e Equation 5.2) procurando fazer adaptações, repassando a amostra duas vezes.
Estes algoritmos podem ser eficientes do ponto de vista da precisão, mas não são rápidos, justamente por
repassarem duas vezes os dados. West [1979] propôs utilizar um algoritmo que faz uma única passada,
atualizando a média e a variância em cada nova observação. Podemos facilmente mostrar para uma
amostra de tamanho n, que a média é igual a X1 se n = 1, (X1 + X2)/2 se n = 2 e assim por diante. No
(k − 1)-ésimo passo podemos especificar o estimador da média por:

X̄k−1 =

k−1∑
i=1

Xi

k − 1 .

No k-ésimo passo teremos observado Xk e a média atualizada é:

X̄k =

k∑
i=1

Xi

k
. (5.3)

A pergunta que fazemos é “podemos expressar a média do k-ésimo passo em função da média do (k − 1)-
ésimo passo?” A resposta a esta pergunta é sim e o resultado nos fornece o algoritmo desejado. A partir
da equação (Equation 5.3) obtemos:

X̄k =

k−1∑
i=1

Xi + Xk

k

=
(k − 1)

k−1∑
i=1

Xi

(k − 1)k + Xk

k

=(k − 1)X̄k−1

k
+ Xk

k

=X̄k−1 − X̄k−1

k
+ Xk

k

resultando na equação recursiva final

X̄k = X̄k−1 + Xk − X̄k−1

k
, (5.4)

para 2 ≤ k ≤ n, sendo que X̄1 = X1.

Da mesma forma se definirmos a soma de quadrados corrigidas das k primeiras observações amostrais

5.2. ALGORITMOS UNIVARIADOS 79

1 < k ≤ n por:

W2k =
k∑

i=1
X2

i −

(
k∑

i=1
Xi

)2

k

veremos que a variância correspondente é dada por S2
k = W2k/(k − 1). Se expandirmos esta expressão

isolando o k-ésimo termo e simplificarmos a expressão resultante teremos:

W2k =
k−1∑
i=1

X2
i + X2

k −

(
k−1∑
i=1

Xi + Xk

)2

k

= W2k−1 + k
(
Xk − X̄k

)2
/(k − 1)

(5.5)

A expressão que desenvolvemos (Equation 5.5) é equivalente a apresentada por West [1979]. Isso pode ser
demonstrado facilmente se substituirmos X̄k obtida na equação (Equation 5.4) na equação (Equation 5.5),
de onde obtivemos:

W2k = W2k−1 + (k − 1)
(
Xk − X̄k−1

)2
/k (5.6)

para 2 ≤ k ≤ n, sendo que W21 = 0. A variância é obtida por S2 = W2n/(n − 1).

Para demonstrarmos diretamente a expressão (Equation 5.6) temos:

W2k =
k−1∑
i=1

X2
i + X2

k −

(
k−1∑
i=1

Xi + Xk

)2

k

=
k−1∑
i=1

X2
i + X2

k −

(
k−1∑
i=1

Xi

)2

+ 2Xk

k−1∑
i=1

Xi + X2
k

k

=
k−1∑
i=1

X2
i + X2

k −
(k − 1)

(
k−1∑
i=1

Xi

)2

+ 2(k − 1)Xk

k−1∑
i=1

Xi + (k − 1)X2
k

k(k − 1)

=
k−1∑
i=1

X2
i −

(
k−1∑
i=1

Xi

)2

k − 1 + X2
k +

(
k−1∑
i=1

Xi

)2

k(k − 1) −
2(k − 1)Xk

k−1∑
i=1

Xi

k(k − 1) − X2
k

k

=W2k−1 +

(
k−1∑
i=1

Xi

)2

k(k − 1) −
2(k − 1)Xk

k−1∑
i=1

Xi

k(k − 1) + (k − 1)X2
k

k

=W2k−1 +
(k − 1)X̄2

k−1
k

− 2(k − 1)XkX̄k−1

k
+ (k − 1)X2

k

k
,

resultando em

W2k = W2k−1 + (k − 1)
(
Xk − X̄k−1

)2
/k.

80 CHAPTER 5. ALGORITMOS PARA MÉDIAS, VARIÂNCIAS E COVARIÂNCIAS

Podemos generalizar essa expressão para computarmos a covariância S(x,y) entre uma variável X e outra
Y . A expressão para a soma de produtos é dada por:

W2k,(x,y) = W2k−1,(x,y) + (k − 1)
(
Xk − X̄k−1

) (
Yk − Ȳk−1

)
/k (5.7)

para 2 ≤ k ≤ n, sendo W 21,(x,y) = 0. O estimador da covariância é obtido por S(x,y) = W 2n,(x,y)/(n − 1).

Podemos observar, analisando todas estas expressões, que para efetuarmos os cálculos da soma de
quadrados e da soma de produtos corrigida necessitamos do cálculo das médias das variáveis no k-ésimo
passo ou no passo anterior. A vantagem é que em uma única passagem pelos dados, obtemos todas as
estimativas. Podemos ainda estender estes resultados para obtermos somas das terceira e quarta potências
dos desvios em relação a média. As expressões que derivamos para isso são:

W3k = W3k−1 + (k2 − 3k + 2)(Xk − X̄k−1)3

k2 − 3(Xk − X̄k−1)W2k−1

k
(5.8)

e
W4k =W4k−1 + (k3 − 4k2 + 6k − 3)(Xk − X̄k−1)4

k3 +

+ 6(Xk − X̄k−1)2W2k−1

k2 − 4(Xk − X̄k−1)W3k−1

k

(5.9)

para 2 ≤ k ≤ n, sendo W31 = 0 e W41 = 0.

Desta forma podemos implementar a função medsq() que retorna a média, a soma de quadrado, cubo e
quarta potência dos desvios em relação a média e variância a partir de um vetor de dados X de dimensão
n.
função para retornar a média, somas de desvios em relação
a média # ao quadrado, ao cubo e quarta potência e variância
def medsq(x):

n = len(x)
if (n <= 1):

print('Vetor deve ter mais de 1 elemento!')
return

xb = x[0]
w2 = 0
w3 = 0
w4 = 0
for j in range(1, n):

d = x[j] - xb
i = j + 1.0
w4 = w4 + (i**3 - 4 * i**2 + 6 * i - 3) * d**4 / i**3 + \

6 * w2 * d**2 / i**2 - 4 * w3 * d / i
w3 = w3 + (i**2 - 3 * i + 2) * d**3 / i**2 - 3 * w2 * d / i
w2 = w2 + (i - 1) * d**2 / i
xb = xb + d / i

s2 = w2 / (n - 1)
res = {'media': xb, 'variância': s2, 'SQ2': w2, 'W3': w3, 'W4': w4}
return res

Exemplo
x = [1, 2, 3, 4, 5, 7, 8]
res = medsq(x)
for key in res.keys():

print(key, ":", res[key])

5.3. ALGORITMOS PARA VETORES MÉDIAS E MATRIZES DE COVARIÂNCIAS 81

media : 4.285714285714286
variância : 6.571428571428572
SQ2 : 39.42857142857143
W3 : 22.04081632653064
W4 : 391.4518950437319

5.3 Algoritmos para Vetores Médias e Matrizes de Covariâncias
Vamos apresentar nesta seção a extensão multivariada para obtermos o vetor de médias e as matrizes
de somas de quadrados e produtos e de covariâncias. Por essa razão não implementamos uma função
específica para obtermos a covariância entre duas variáveis X e Y . Seja uma amostra aleatória no espaço
Rp dada por X1, X2, · · ·, Xj , · · ·, Xn, sendo que estes vetores serão dispostos em uma matriz X de
dimensões (n × p). Para estendermos os resultados da seção anterior, utilizaremos as mesmas expressões,
tomando o devido cuidado para adaptá-las para lidar com operações matriciais e vetoriais. Assim, para
estimarmos o vetor de médias populacionais, em vez de utilizar o estimador clássico dos livros textos dado
por

X̄ =

n∑
i=1

Xi

n
,

utilizaremos a expressão recursiva dada por

X̄k = X̄k−1 + Xk − X̄k−1

k
, (5.10)

para 2 ≤ k ≤ n, sendo que X̄1 = X1.

Da mesma forma, a adaptação para p dimensões da expressão (Equation 5.6) é direta e o resultado obtido
é:

Wk = Wk−1 + (k − 1)
(
Xk − X̄k−1

) (
Xk − X̄k−1

)⊤
/k (5.11)

para 2 ≤ k ≤ n, sendo W1 = 0, uma matriz de zeros de dimensões (p × p). O estimador da matriz de
covariâncias é obtido por S = Wn/(n − 1).

Implementamos a função medcov() apresentada a seguir para obtermos o vetor de médias, a matriz de
somas de quadrados e produtos e a matriz de covariâncias. O argumento desta função deve ser uma matriz
de dados multivariados com n linhas (observações) e p colunas (variáveis). O programa resultante e um
exemplo são apresentados na sequência. Escolhemos um exemplo onde geramos uma matriz de dados de
uma normal multivariada.
função para retornar o vetor de médias, a matriz de
somas de # quadrados e produtos e a matriz de covariâncias
import numpy as np
def medcov(x):

n = x.shape[0]
p = x.shape[1]
if (n <= 1):

print('Matriz deve ter mais de 1 linha!')
return

xb = x[0,:]
w = np.zeros((p, p))
for j in range(1, n):

82 CHAPTER 5. ALGORITMOS PARA MÉDIAS, VARIÂNCIAS E COVARIÂNCIAS

d = x[j,:] - xb
i = j + 1.0
w = w + (i - 1) * np.outer(d, d) / i
xb = xb + d / i

s = w / (n - 1)
res = {'media': xb, 'covariância': s, 'SQP': w}
return res

Exemplo
n = 1000
p = 5
x = np.random.multivariate_normal(np.zeros(p),np.identity(p),n)
res = medcov(x)
for keys,values in res.items():

print(keys)
print(values)

comparar com resultado da nossa função
np.cov(x, rowvar = False)
np.mean(x, axis = 0)

media
[-0.01276798 -0.04035919 0.02005495 0.00904786 0.02885317]
covariância
[[1.01813024 -0.01220918 -0.00114428 0.04807771 -0.0222148]
[-0.01220918 1.01289346 0.02455342 0.05647323 -0.01660217]
[-0.00114428 0.02455342 1.03375912 0.02725577 -0.00796194]
[0.04807771 0.05647323 0.02725577 0.99081434 -0.02314937]
[-0.0222148 -0.01660217 -0.00796194 -0.02314937 0.98379871]]

SQP
[[1017.11210583 -12.19697261 -1.1431331 48.02963571 -22.19258359]
[-12.19697261 1011.88056912 24.52886389 56.41675343 -16.58556636]
[-1.1431331 24.52886389 1032.72536475 27.22851107 -7.95397404]
[48.02963571 56.41675343 27.22851107 989.82352575 -23.12621715]
[-22.19258359 -16.58556636 -7.95397404 -23.12621715 982.81490942]]

array([[1.01813024, -0.01220918, -0.00114428, 0.04807771, -0.0222148],
[-0.01220918, 1.01289346, 0.02455342, 0.05647323, -0.01660217],
[-0.00114428, 0.02455342, 1.03375912, 0.02725577, -0.00796194],
[0.04807771, 0.05647323, 0.02725577, 0.99081434, -0.02314937],
[-0.0222148 , -0.01660217, -0.00796194, -0.02314937, 0.98379871]])

array([-0.01276798, -0.04035919, 0.02005495, 0.00904786, 0.02885317])

Felizmente, devido ao Python (numpy) usar precisão dupla e utilizar algoritmos de ótima qualidade para
estas tarefas, não precisaremos nos preocupar com a implementação de funções como as apresentadas neste
capítulo. Mas se formos utilizar um compilador da linguagem Pascal, Fortran ou C e C++, deveremos
fazer uso destes algoritmos, pois somente assim alcançaremos elevada precisão, principalmente se tivermos
lidando com dados de grande magnitude ou muito próximos de zero.

5.4 Exercícios
1. Mostrar a equivalência existente entre as expressões (Equation 5.5) e (Equation 5.6).

2. Implementar em Python uma função para obtermos a soma de produtos, equação (Equation 5.7), e

5.4. EXERCÍCIOS 83

covariância entre as n observações de duas variáveis e cujos valores estão dispostos em dois vetores X
e Y. Criar uma matriz com n linhas e p = 2 colunas de algum exemplo e utilizar a função medcov()
para comparar os resultados obtidos.

3. Os coeficientes de assimetria e curtose amostrais são funções das somas de potências dos desvios em
relação a média. O coeficiente de assimetria é dado por

√
b1 = (W 3n/n)/(W 2n/n)3/2 e o coeficiente

de curtose é b2 = (W4n/n)/(W2n/n)2. Implementar uma função Python, utilizando a função
medsq() para estimar o coeficiente de assimetria e curtose univariados.

4. Utilizar uma amostra em uma área de sua especialidade e determinar a média, variância, soma de
quadrados, soma de desvios ao cubo e na quarta potência. Determinar também os coeficientes de
assimetria e curtose.

84 CHAPTER 5. ALGORITMOS PARA MÉDIAS, VARIÂNCIAS E COVARIÂNCIAS

Chapter 6

Aproximação de Distribuições

Algoritmos para a obtenção de probabilidades foram alvos de pesquisas de muitas décadas e ainda
continuam sendo. A importância de se ter algoritmos que sejam rápidos e precisos é indescritível. A maior
dificuldade é que a maioria dos modelos probabilísticos não possui função de distribuição explicitamente
conhecida. Assim, métodos numéricos sofisticados são exigidos para calcularmos probabilidades. Um outro
aspecto é a necessidade de invertermos as funções de distribuição para obter quantis da variável aleatória
para uma probabilidade acumulada conhecida. Nos testes de hipóteses e nos processos de estimação por
intervalo e por região quase sempre utilizamos estes algoritmos indiretamente sem nos darmos conta disso.

Neste capítulo vamos introduzir estes conceitos e apresentar algumas ideias básicas de métodos gerais
para realizar as quadraturas necessárias. Métodos numéricos particulares serão abordados para alguns
poucos modelos. Também abordaremos separadamente os casos discreto e contínuo. Para finalizarmos
apresentaremos as principais funções pré-existentes do Python para uma série de modelos probabilísticos.

6.1 Introdução
Não temos muitas preocupações com a obtenção de probabilidades e quantis, quando utilizamos o Python,
pois a maioria dos modelos probabilísticos e das funções especiais já está implementada. Nosso objetivo
está além deste fato, pois nossa intenção é buscar os conhecimentos necessários para ir adiante e para
entendermos como determinada função opera e quais são suas potencialidades e limitações.

Vamos iniciar nossa discussão com a distribuição exponencial para chamarmos a atenção para a principal
dificuldade existente neste processo. Assim, escolhemos este modelo justamente por ele não apresentar
tais dificuldades. Considerando uma variável aleatória X com distribuição exponencial com parâmetro λ,
temos a função densidade

f(x) = λe−λx, x > 0 (6.1)

e a função de distribuição
F (x) = 1 − e−λx. (6.2)

Para este modelo probabilístico podemos calcular probabilidades utilizando a função de distribuição
(Equation 6.2) e obter quantis com a função de distribuição inversa que é dada por:

q = F −1(p) = − ln(1 − p)
λ

. (6.3)

Implementamos, em Python, as funções densidade, de distribuição e inversa da distribuição e as denomi-
namos dexp, pexp e qexp, respectivamente. Estas funções são:

85

86 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

import numpy as np
função densidade exponencial
f(x) = lamb * exp(-lamb * x)
def dexp(x, lamb = 1):

if type(x) is int or type(x) is float:
x = np.array([x])

fx = np.zeros(len(x))
if any(x < 0):

fx[x >= 0] = lamb * np.exp(-lamb * x[x >= 0])
return fx

else:
fx = lamb * np.exp(-lamb * x)
return fx

função de distribuição exponencial
F(x) = 1 - exp(-lamb * x)
def pexp(x, lamb = 1):

if type(x) is int or type(x) is float:
x = np.array([x])

Fx = np.zeros(len(x))
if any(x < 0):

Fx[x >= 0] = 1 - np.exp(-lamb * x[x >= 0])
return Fx

else:
Fx = 1.0 - np.exp(-lamb * x)
return Fx

função inversa da distribuição exponencial
q = -log(1 - p) / lamb
def qexp(p, lamb = 1):

if type(p) is int or type(p) is float:
p = np.array([p])

q = np.zeros(len(p))
if any(p >= 1) or any(p < 0):

q[(p >= 0) & (p < 1)] = -np.log(1 - p[(p >= 0) & (p < 1)]) / lamb
mask_invalid = (p >= 1) | (p < 0)
q[mask_invalid] = np.nan
print('NaN produzidos!')
return q

else:
q = -np.log(1 - p) / lamb
return q

Exemplo
lamb = 0.1
x = np.array([29.95732, -0.03])
print('fdp de valores negativos: ',dexp(x, lamb))
print('cdf de valores negativos: ',pexp(x, lamb))
p = np.array([-0.5, 0.95, 1.0])
print('icdf de valores impróprios: ',qexp(p, lamb))
x = 29.95732

6.1. INTRODUÇÃO 87

p = 0.95
print('fdp: ',dexp(x, lamb))
print('cdf: ',pexp(x, lamb))
print('icdf: ',qexp(p, lamb))

fdp de valores negativos: [0.005 0.]
cdf de valores negativos: [0.94999999 0.]
NaN produzidos!
icdf de valores impróprios: [nan 29.95732274 nan]
fdp: [0.005]
cdf: [0.94999999]
icdf: [29.95732274]

Estas três funções foram facilmente implementadas, pois conseguimos explicitamente obter a função de
distribuição e sua inversa. Se por outro lado tivéssemos o modelo normal

f(x) = 1√
2πσ2

exp
{

− (x − µ)2

2σ2

}
(6.4)

não poderíamos obter explicitamente a função de distribuição e muito menos a função inversa da função
de distribuição de probabilidade. Como para a grande maioria dos modelos probabilísticos encontramos os
mesmos problemas, necessitamos de métodos numéricos para obter estas funções. Por essa razão iremos
apresentar alguns detalhes neste capítulo sobre alguns métodos gerais e específicos de alguns modelos. No
caso discreto podemos utilizar algoritmos sequenciais, porém como boa parte dos modelos probabilísticos
possuem relação exata com modelos contínuos, encontramos os mesmos problemas.

Uma outra preocupação que devemos ter é em relação a possíveis entradas incorretas do usuário nos
argumentos das funções. Não tivemos muitas preocupações até o momento com possíveis erros em função
de chamadas de nossas funções com argumentos incorretos. Para ilustrarmos, vamos considerar somente
a função densidade de probabilidade da exponencial. Neste caso, se λ > 0, e os valores de x positivos
ou nulos, não termos nenhum problema. Se por outro lado, os valores de x forem negativos, então o
valor da densidade deve ser zero. Este tipo de preocupação existiu na implementação da função dexp
anterior. Entretanto, podemos ter valores do parâmetro λ nulo ou negativo incorretamente na chamada da
função, o que não é válido e nenhuma proteção foi feita. Assim, é prudente que alguns problemas sejam
antevistos e resultados coerentes sejam retornados. Neste caso deve-se retornar o resultado nan, pois a
função densidade não é válida nestas condições. Além disso, o argumento lamb da função é considerado
um escalar, mas o argumento x pode ser um vetor. Podemos também tratar este caso, considerando tratar
ambos argumentos como vetores, mesmo que não mudemos o valor escalar do argumento lamb padrão e
fazer um ajuste nas dimensões dos mesmos, caso eles tenham tamanhos diferentes. O programa a seguir
ilustra isso e utiliza o np.resize para realizar este ajuste.
import numpy as np

def dexp(x, lamb=1):
Converter para arrays e garantir que são floats
x_arr = np.array(x, ndmin=1, dtype=float)
lamb_arr = np.array(lamb, ndmin=1, dtype=float)

Expandir para terem o mesmo tamanho
size = max(len(x_arr), len(lamb_arr))

x_expanded = np.resize(x_arr, size)
lamb_expanded = np.resize(lamb_arr, size)

88 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

Inicializar resultado com NaN para lidar com casos inválidos
result = np.full(size, np.nan, dtype=float)

Máscara para valores válidos de lambda (positivos e não zero)
valid_lambda = lamb_expanded > 0

Máscara para valores válidos de x (não negativos)
valid_x = x_expanded >= 0

Máscara combinada: x >= 0 E lambda > 0
valid_mask = valid_x & valid_lambda

Calcular a densidade apenas para casos válidos
result[valid_mask] = (lamb_expanded[valid_mask]*

np.exp(-lamb_expanded[valid_mask]*x_expanded[valid_mask]))

Para x < 0 COM lambda válido: resultado é 0
Para x < 0 COM lambda inválido: mantém NaN (já inicializado)
result[(x_expanded < 0) & valid_lambda] = 0.0

Retornar formato apropriado
if np.isscalar(x) and np.isscalar(lamb):

return float(result[0])
else:

return result

Testes
print("=== Testes da função dexp ===")
Caso 1: lambda positivo (normal)
print("\n1. Lambda positivo:")
print(f"dexp(1, 1) = {dexp(1, 1):.4f}")

Caso 2: lambda zero
print("\n2. Lambda zero:")
print(f"dexp(1, 0) = {dexp(1, 0)}")

Caso 3: lambda negativo
print("\n3. Lambda negativo:")
print(f"dexp(1, -1) = {dexp(1, -1)}")

Caso 4: mistura de lambdas válidos e inválidos
print("\n4. Mistura de lambdas:")
x = [1, 2, 3]
lambdas = [0.5, 0, -1]
result = dexp(x, lambdas)
print(f"x = {x}")
print(f"lambdas = {lambdas}")
print(f"resultado = {result}")

Caso 5: x negativo (sempre retorna 0, mesmo com lambda inválido)
print("\n5. x negativo:")
print(f"dexp(-1, 0) = {dexp(-1, 0)}")

6.1. INTRODUÇÃO 89

print(f"dexp(-1, -1) = {dexp(-1, -1)}")

Caso 6: vetores com reciclagem
print("\n6. Reciclagem com lambda inválido:")
x = [1, 2, -3, 4]
lamb = [0.5, -0.5]
result = dexp(x, lamb)
print(f"x = {x}")
print(f"lamb = {lamb}")
print(f"resultado = {result}")

Caso 7: verificação de cálculo correto
print("\n7. Verificação de valores esperados:")
test_cases = [

(0, 1, 1.0), # f(0) = lambda
(1, 1, np.exp(-1)), # f(1) = eˆ-1
(2, 0.5, 0.5 * np.exp(-1)) # f(2) = 0.5 * eˆ-1

]

for x_val, lamb_val, expected in test_cases:
result = dexp(x_val, lamb_val)
print(f"dexp({x_val}, {lamb_val}) = {result:.4f} (esperado: {expected:.4f})")

=== Testes da função dexp ===

1. Lambda positivo:
dexp(1, 1) = 0.3679

2. Lambda zero:
dexp(1, 0) = nan

3. Lambda negativo:
dexp(1, -1) = nan

4. Mistura de lambdas:
x = [1, 2, 3]
lambdas = [0.5, 0, -1]
resultado = [0.30326533 nan nan]

5. x negativo:
dexp(-1, 0) = nan
dexp(-1, -1) = nan

6. Reciclagem com lambda inválido:
x = [1, 2, -3, 4]
lamb = [0.5, -0.5]
resultado = [0.30326533 nan 0. nan]

7. Verificação de valores esperados:
dexp(0, 1) = 1.0000 (esperado: 1.0000)
dexp(1, 1) = 0.3679 (esperado: 0.3679)

90 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

dexp(2, 0.5) = 0.1839 (esperado: 0.1839)

Neste caso, a função faz um redimensionamento automático dos vetores por repetição para equalizar seus
tamanhos antes do cálculo elemento a elemento. Isso ocorre com o uso do np.resize, após o tamanho
máximo em relação ao tamanho de ambos os vetores ser obtido. Se os tamanhos são diferentes, faz-se uma
reciclagem incompleta do vetor menor através de repetição cíclica, truncando o padrão quando atinge o
tamanho do vetor maior, sem completar o último ciclo. Isso quer dizer que se faz uma reciclagem cíclica
do vetor menor, interrompendo a repetição quando atinge o tamanho exato do vetor maior, mesmo que
isso signifique deixar o último ciclo incompleto. Depois de ajustados os tamanhos dos vetores, cria-se um
vetor result para os resultados com nan. Assim, se tiver valores inválidos, obtém-se uma máscara booleana
combinada de valores de x não negativos e de lamb positivos. Cálcula-se a densidade apenas onde estas
duas condições ocorrem simultaneamente e substitui os nan de result pelos valores da densidade. O
problema é que se o x for negativo e o lamb for positivo, o valor da densidade deve ser zero e ela não
é computada com o uso da máscara anterior. Mas se x for negativo e lambda inválido, mantém os nan
enteriormente definidos em result. Por definição, a função densidade de probabilidade existe para todos os
reais, desde que os parâmetros dos modelos estejam corretamente definidos. O programa faz um ajuste
específico final para o caso onde x é negativo mas lamb é positivo, com o comando result[(x_expanded <
0) & valid_lambda] = 0.0 (veja o caso 6).

6.2 Modelos Probabilísticos Discretos
Vamos apresentar algoritmos para obtenção da função de probabilidade, função de distribuição de
probabilidade e sua inversa para os modelos discretos que julgamos mais importantes, os modelos binomial
e Poisson. Vamos iniciar nossa discussão pelo modelo binomial. Considerando uma variável aleatória X
com distribuição binomial, então a sua função de probabilidade é dada por:

P (X = x) =
(

n

x

)
px(1 − p)(n−x) (6.5)

em que n é o tamanho da amostra ou números de ensaios de Bernoulli independentes com probabilidade de
sucesso p e x é o número de sucessos, que pertence ao conjunto finito 0, 1, · · ·, n. A função de distribuição
de probabilidade é dada por:

F (x) =
x∑

t=0

(
n

t

)
pt(1 − p)n−t. (6.6)

Vimos no capítulo 3, equação (Equation 3.14) que podemos obter as probabilidades acumuladas de forma
recursiva. Sendo P (X = 0) = (1 − p)n, obtemos as probabilidades para os demais valores de X, ou seja,
para x = 1, · · ·, n de forma recursiva utilizando a relação P (X = x) = P (X = x−1)[(n−x+1)/x][p/(1−p)].
Podemos sintetizar da seguinte forma:

P (X = x) = P (X = x − 1)
(g

x
− r
)

,

em que r = p/(1 − p) e g = r(n + 1), para x = 2, 3, · · ·, n.

Este mesmo algoritmo apropriadamente modificado é utilizado para obtermos as probabilidades acumuladas
e a inversa da função de distribuição. Se os valores de n e de p forem grandes, este algoritmo pode ser
ineficiente. Para o caso do parâmetro p ser grande (próximo de um) podemos utilizar a propriedade da
binomial dada por: se X ∼ Bin(n, p), então Y = n − X ∼ Bin(n, 1 − p). Assim, podemos, por exemplo,
obter P (X = x) de forma equivalente por P (Y = n − x) e P (X ≤ x) = P (Y ≥ n − x), que pode ser
reescrito por FX(x) = 1 − FY (n − x − 1), exceto para x = n, em que FX(x) = 1. Desta forma trocamos
de variável para realizar o cálculo e retornamos o valor correspondente a do evento original.

6.2. MODELOS PROBABILÍSTICOS DISCRETOS 91

função de probabilidade e distribuição
da binomial(n, p)
def dpbinom(x, n, p = 0.5):

if p > 0.5:
pp = 1 - p
xx = n - x

else:
pp = p

qq = 1 - pp
if (xx < 0 or xx > n):

f = 0
if xx < 0:

cdf = 1
else:

cdf = 0
return {'pdf': f,'cdf': cdf}

else:
f = qq**n

r = pp / qq
g = r * (n + 1)
cdf = f
u = 0
while(u < xx):

u += 1
f *= (g / u - r)
cdf += f

if p > 0.5:
cdf = 1 - cdf + f # pois 1-F(n-x) e não 1-F(n-x-1) foi calculado

return {'pdf': f,'cdf': cdf}

inversa da função distribuição
binomial(n, p)
def qbinom(prob, n, p):

if prob < 0 or prob > 1:
return float("nan")

if prob == 1:
return n

if prob == 0:
return 0

q = 1 - p
f = q**n
r = p / q
g = r * (n + 1)
x = 0
cdf = f
while (prob - cdf) >= 1.e-14:

x += 1
f *= (g / x - r)
cdf += f

return x

Exemplo de uso

92 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

p = 0.5713131
x = 5 # retire a tolerância, qbinom falha
n = 20
res = dpbinom(x, n, p)
for keys,values in res.items():

print(keys)
print(values)

prob = res['cdf']
print('inversa CDF',qbinom(prob, n, p))

pdf
0.0028636362867051975
cdf
0.0036697111708624904
inversa CDF 5

Se usarmos a propriedade de que se X é binomial com parâmetros n e p, então n − X também é binomial
com parâmetros n e 1 − p. Como o algoritmo é mais eficiente quando p < 0,5, pois q = 1 − p está mais
próximo de 1 e a velocidade de execução do algoritmo é proporcional a np. Assim, se ganha em tempo de
processamento e precisão, se p > 0,5 e nós realizarmos a troca para n − X. O script a seguir apresenta
esta alteração na função qbinom:
inversa da função distribuição
binomial(n, p), com troca se p > 0.5
def qqbinom(prob, n, p):

if prob <= 0 or prob > 1:
return float("nan")

if prob == 1:
return n

if p > 0.5:
pp = 1 - p
probq = 1 - prob

else:
pp = p
probq = prob

qq = 1 - pp
f = qq**n
r = pp / qq
g = r * (n + 1)
x = 0
cdf = f
while ((probq - cdf) >= 1.e-11):

x += 1
f *= (g / x - r)
cdf += f

if p > 0.5:
if (probq - cdf) <= 1.e-11:

x = n - x - 1
else:

x = n - x
return x

Exemplo de uso

6.2. MODELOS PROBABILÍSTICOS DISCRETOS 93

p = 0.5713131
x = 5 # retire a tolerância, qbinom falha
n = 20
res = dpbinom(x, n, p)
print(res)
prob = res['cdf']
print('inversa CDF',qqbinom(prob, n, p))

{'pdf': 0.0028636362867051975, 'cdf': 0.0036697111708624904}
inversa CDF 5

A função de distribuição binomial possui uma relação exata com a função distribuição beta. Se tivermos
algoritmos para obter a beta incompleta podemos utilizar esta relação para obter probabilidades da
distribuição binomial. A função de distribuição binomial, F (x), se relaciona com a função beta incompleta,
Ip(α,β), da seguinte forma:

F (x; n,p) =
{

1 − Ip(x + 1,n − x), se 0 ≤ x < n
1, se x = n.

(6.7)

Desta forma podemos antever a importância de conhecermos algoritmos de integração numérica das
distribuições contínuas. Isso fica mais evidente quando percebemos que para grandes valores de n os
algoritmos recursivos são ineficientes e podem se tornar imprecisos. Na seção Section 6.3 apresentaremos
alguns métodos gerais de integração para funções contínuas. No script seguinte utilizamos a relação
(Equation 6.7) para a obtenção da função de distribuição da binomial.
função de probabilidade e distribuição da
binomial(n, p) a partir da relação com a
função beta incompleta - cdf da beta
from scipy.stats import beta
import scipy.stats as sps
def pbinombeta(x, n, p = 0.5):

if p <= 0 or p >= 1:
print('p deve estar no intervalo (0, 1)')
return

if (x < n):
a = x + 1
b = n - x
cdf = 1 - beta.cdf(p, a, b)

else:
cdf = 1

return cdf

Exemplo
p = 0.5713131
n = 20
x = 3
pbinombeta(x, n, p)
sps.binom.cdf(x, n, p)

np.float64(0.00013459360572398715)

np.float64(0.00013459360572400553)

A distribuição Poisson é a segunda que consideraremos. Existe relação da função de distribuição da

94 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

Poisson com a gama incompleta. Se uma variável aleatória discreta X com valores x = 0, 1, 2, 3, · · ·
possui distribuição Poisson com parâmetro λ, então podemos definir a função de probabilidade por:

P (X = x) = λxe−λ

x! . (6.8)

Podemos obter probabilidades desta distribuição utilizando a relação da gama incompleta com a função
de distribuição Poisson

F (x|λ) = 1 − Iλ(α = x + 1), x = 0, 1, 2, · · · . (6.9)

sendo

Ix(α) = 1
Γ(α)

∫ x

0
e−ttα−1dt,

a função gama incompleta, para valores de x ≥ 0. O script para isso é
função de probabilidade e distribuição da
Poisson(lamb) usando a relação com a função
gama incompleta - cdf da gama
from scipy.stats import gamma
import scipy.stats as sps
def pgama(x, lamb = 1.0):

if lamb <= 0:
print('lambda deve ser maior que 0')
return

if (x >= 0):
a = x + 1.0
cdf = 1 - gamma.cdf(lamb, a)

else:
cdf = 0

return cdf

Exemplo
lamb = 0.85
x = 3.0
pgama(x, lamb)
sps.poisson.cdf(x, lamb)

np.float64(0.9888689674521238)

np.float64(0.9888689674521238)

6.3 Modelos Probabilísticos Contínuos
Para obtermos a função de distribuição ou a inversa da função de distribuição de modelos probabilísticos
contínuos via de regra devemos utilizar métodos numéricos. Existem exceções como, por exemplo, o
modelo exponencial descrito no início deste capítulo. A grande maioria dos modelos probabilísticos
utilizados atualmente faz uso de algoritmos especialmente desenvolvidos para realizar quadraturas em cada
caso particular. Estes algoritmos são, em geral, mais precisos do que os métodos de quadraturas, como
são chamados os processos de integração numérica. Existem vários métodos de quadraturas numéricas
como o método de Simpson, as quadraturas gaussianas e os métodos de Monte Carlo. Vamos apresentar
incialmente os métodos de Simpson e de Monte Carlo, que são mais simples e são menos precisos.

6.3. MODELOS PROBABILÍSTICOS CONTÍNUOS 95

Vamos utilizar o modelo normal para exemplificar o uso desses métodos gerais de integração nas funções
contínuas de probabilidades. Uma variável aleatória X com distribuição normal com média µ e variância
σ2 possui função densidade dada por:

f(x) = 1√
2πσ2

exp
{

− (x − µ)2

2σ2

}
. (6.10)

A função de distribuição de probabilidade não pode ser obtida explicitamente e é definida por:

F (x) =
∫ x

−∞

1√
2πσ2

exp
{

− (t − µ)2

2σ2

}
dt. (6.11)

Em geral utilizamos a normal padrão para aplicarmos as quadraturas. Neste caso a média é µ = 0 e a
variância é σ2 = 1. Assim, representamos frequentemente a densidade por ϕ(z), a função de distribuição
por Φ(z) e a sua inversa por Φ−1(p), em que 0 < p < 1. A variável Z é obtida de uma transformação
linear de uma variável X normal por Z = (X − µ)/σ.

Vamos apresentar de forma bastante resumida a regra trapezoidal estendida para realizarmos quadraturas
de funções. Seja fi o valor da função alvo no ponto xi, ou seja, fi = f(xi), então a regra trapezoidal é
dada por:

∫ xn

x1

f(x)dx = h

2 (f1 + fn) + O(h3f ′′), (6.12)

em que h = xn − x1 e o termo de erro O(h3f ′′) significa que a verdadeira resposta difere da estimada
por uma quantidade que é o produto de h3 pelo valor da segunda derivada da função avaliada em algum
ponto do intervalo de integração determinado por x1 e xn, sendo x1 < xn.

Esta equação retorna valores muito imprecisos para as quadraturas da maioria das funções de interesse
na estatística. Mas se utilizarmos esta função n − 1 vezes para fazer a integração nos intervalos (x1, x2),
(x2, x3), · · ·, (xn−1, xn) e somarmos os resultados, obteremos a fórmula composta ou a regra trapezoidal
estendida por:

∫ xn

x1

f(x)dx = h

(
f1

2 + f2 + f3 + · · · + fn−1 + fn

2

)
+ O

(
(xn − x1)3f ′′

n2

)
. (6.13)

em que h = (xn − x1)/(n − 1).

Uma das melhores forma de implementar a função trapezoidal é discutida e apresentada por Press et al.
[1992]. Nesta implementação inicialmente é tomada a média da função nos seus pontos finais de integração
x1 e xn. São realizados refinamentos sucessivos. No primeiro estágio devemos acrescentar o valor da
função avaliada no ponto médio dos limites de integração e no segundo estágio, os pontos intermediários
1/4 e 3/4 são inseridos e assim sucessivamente.

Podemos implementar esta rotina de forma iterativa, dinâmica e recursiva:

• Calculamos o valor inicial da integral S considerando os pontos de extremo, da seguinte forma:

S =(b − a)
2 (f(a) + f(b)) .

• No passo n = 2, atualizamos S, inserindo um valor x = a + (b − a)/2 no ponto médio entre a e
b. Calculamos f(x) e armazenamos em sum. Definimos it como sendo o número de pontos a ser

96 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

inserido entre a e b por it = 2n−2, em que n = 2, indica que estamos no segundo passo. Atualizamos
S, por

S = 1
2 (S + (b − a) × sum/it) . (6.14)

• Fazemos n = 3, 4, 5, · · · e repetimos o passo 2, atualizando S a partir de seu antigo valor computado
no passo anterior usando (Equation 6.14). Para cada valor de n devemos comparar os valores do
passo anterior e atual até que uma dada precisão seja alcançada.

• Veja que sum do passo 2 depende de it. Assim, por exemplo, se n = 3, it = 21 = 2. Devemos
computar ∆ = (b − a)/it e os dois pontos a serem inseridos são x1 = a + ∆/2 e x2 = x1 + ∆. Assim,
sum = f(x1) + f(x2).

• Em um passo geral, n, temos it = 2n−2 pontos, ∆ = (b − a)/it, x1 = a + ∆/2 e xk = xk−1 + ∆,
k = 2, 3, · · ·, it. Assim, sum =

∑it
k=1 f(xk).

Sejam func() a função de interesse, a e b os limites de integração e n o número de intervalos de integração
previamente definido, então podemos obter a função trapzd() adaptando a mesma função implementada
em Fortran por Press et al. [1992] da seguinte forma:
Esta rotina calcula o n-ésimo estágio de refinamento da
integração trapezoidal estendida, em que, func é uma
função externa de interesse que deve ser chamada para
n=1, 2, etc. e o valor de s deve ser retornado a função
em cada nova chamada.
import math
def trapzd(func, a, b, s, n):

if n == 1:
s = 0.5 * (b - a) * (func(a) + func(b))

else:
it = 2**(n - 2)
dl = (b - a) / it # espaço entre pontos
x = a + 0.5 * dl
soma = 0.0
for j in range(it):

soma += func(x)
x += dl

refina o valor de s
s = 0.5 * (s + (b - a) * soma / it)

return s
função para executar quadraturas de
funções definidas em func()
até que uma determinada
precisão tenha sido alcançada
def qtrap(func, a, b):

eps = 1.0e-11
nmax = 30
olds = -1.e30 # impossível valor para quadratura inicial
n = 1
fim = 0
s = -1.0e15 # valor arbitrário para iniciar o loop
while abs(s-olds) >= eps * abs(olds) and fim == 0:

olds = s
s = trapzd(func, a, b, s, n)
n = n + 1

6.3. MODELOS PROBABILÍSTICOS CONTÍNUOS 97

if n > nmax:
fim = 1

if n > nmax:
print('Limite de passos ultrapassado!')
return

return s

Devemos chamar a função qtrap() especificando a função de interesse func() e os limites de integração.
Assim, para a normal padrão devemos utilizar as seguintes funções:
fdp da normal padrão
def dnorm(x):

fx = (1.0 / (2.0 * math.pi)**0.5) * math.exp(-x**2 / 2)
return fx

def pnorm(x):
p = qtrap(dnorm, 0.0, abs(x))
if x > 0:

p += 0.5
else:

p = 0.5 - p
return p

exemplo
z = 1.96
print(pnorm(z))
print(sps.norm.cdf(z))

0.9750021048512256
0.9750021048517795

É evidente que temos métodos numéricos gerais mais eficientes do que o apresentado. As quadraturas
gaussianas representam uma classe de métodos que normalmente são mais eficientes que este apresentado.
Eventualmente, existem métodos específicos para obtermos as integrais dos principais modelos probabilísti-
cos que são mais eficientes. A maior eficiência destes métodos específicos se dá por dois aspectos: velocidade
de processamento e precisão. Se exisitirem, no Python estas rotinas específicas já estão implementadas.
Como ilustração, podemos substituir a função que implementamos pnorm() pela pré-existente no Python
normal.cdf() do scipy.stats. Vamos ilustrar um destes algoritmos especializados para obtermos a
função de distribuição da normal padrão. O algoritmo de Hasting possui erro máximo de 1 × 10−6 e é
dado por:

Φ(x) =
{

G se x ≤ 0
1 − G se x > 0 (6.15)

sendo G dado por

G = (a1η + a2η2 + a3η3 + a4η4 + a5η5)ϕ(x)

em que

η = 1
1 + 0,2316418|x|

e a1 = 0,319381530, a2 = −0,356563782, a3 = 1,781477937, a4 = −1,821255978 e a5 = 1,330274429.

98 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

O resultado da implementação deste procedimento é:
CDF da normal padrão:
aproximação de Hasting
def phnorm(x):

eta = 1 / (1 + abs(x) * 0.2316418)
a1 = 0.319381530; a2 = -0.356563782
a3 = 1.781477937; a4 = -1.821255978
a5 = 1.330274429
phi = 1 / (2 * math.pi)**0.5 * math.exp(-x * x / 2)
g = (a1*eta+a2*eta**2+a3*eta**3+a4*eta**4+a5*eta**5)*phi
if (x <= 0):

cdf = g
else:

cdf = 1 - g
return cdf

exemplo
z = 1.96
p = phnorm(z)
p

0.9750021668514388

Com o uso desta função ganhamos em precisão, principalmente para grandes valores em módulo do
limite de integração superior e principalmente ganhamos em tempo de processamento. Podemos ainda
abordar os métodos de Monte Carlo, que são especialmente úteis para integrarmos funções complexas e
multidimensionais. Vamos apresentar apenas uma versão bastante rudimentar deste método. A ideia é
determinar um retângulo que engloba a função que desejamos integrar e bombardearmos a região com
pontos aleatórios (u1, u2) provenientes da distribuição uniforme.

Contamos o número de pontos sob a função e determinamos a área correspondente, a partir da propor-
cionalidade entre este número de pontos e o total de pontos simulados em relação a área sob a função
na região de interesse em relação à área total do retângulo. Se conhecemos o máximo da função fmax,
podemos determinar este retângulo completamente. Assim, o retângulo de interesse fica definido pela base
(valor entre 0 e z1 em módulo, sendo z1 fornecido pelo usuário) e pela altura (valor da densidade no ponto
de máximo). Assim, a área deste retângulo é A = |z1|fmax. No caso da normal padrão, o máximo obtido
para z = 0 é fmax = 1/

√
2π e a área do retângulo A = |z1|/

√
2π. Se a área sob a curva, que desejamos

estimar, for definida por A1, podemos gerar números uniformes u1 entre 0 e |z1| e números uniformes u2
entre 0 e fmax. Para cada valor u1 gerado calculamos a densidade f1 = f(u1). Assim, a razão entre as
áreas A1/A é proporcional a razão n/N , em que n representa o número de pontos (u1, u2) para os quais
u2 ≤ f1 e N o número total de pontos gerados. Logo, a integral é obtida por A1 = |z1| × fmax × n/N , em
que z1 é o valor da normal padrão para o qual desejamos calcular a área que está compreendida entre 0 e
|z1|, para assim obtermos a função de distribuição no ponto z1, ou seja, para obtermos Φ(z1). Assim, se
z1 ≤ 0, então Φ(z1) = 0,5 − A1 e se z1 > 0, então Φ(z1) = 0,5 + A1. Veja a seguinte figura ilustrativa:

6.3. MODELOS PROBABILÍSTICOS CONTÍNUOS 99

Para o caso particular da normal padrão, implementamos a seguinte função:
Quadratura da normal padrão
via simulação Monte Carlo
import numpy as np
def mcpnorm(x, N = 2000):

max = 1 / (2 * math.pi)**0.5
z = abs(x)
u1 = np.random.uniform(0, z, N) # 0 < u1 < z
u2 = np.random.uniform(0, max, N) # 0 < u2 < max
f1 = (1/(2*math.pi)**0.5)*np.exp(-u1**2/2) # f1(u1): N(0,1)
n = len(f1[u2 <= f1])
g = n / N * max * z
if (x < 0):

cdf = 0.5 - g
else:

cdf = 0.5 + g
return(cdf)

exemplo
z = 1.96
N = 1500000
mcpnorm(z, N)
print('Erro de MC: ',1 / N**0.5)

0.9753630572428649

Erro de MC: 0.0008164965809277261

Outra forma de obtermos uma aproximação da integral

∫ abs(z)

0

1√
2π

e−t2/2dt =
∫ abs(z)

0
ϕ(t)dt

100 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

por Monte Carlo é gerarmos m números uniformes entre 0 e abs(z), digamos z1, z2, . . ., zm e obter

∫ abs(z)

0
ϕ(t)dt ≈ ∆z

[
1
m

m∑
i=1

ϕ(zi)
]

,

em que ϕ(t) = 1/
√

2π × exp{−t2/2} é a função densidade normal padrão avaliada no ponto t e ∆z =
abs(z) − 0. A ordem de erro desse processo é dada por O(m−1/2). O programa Python para obter o valor
da função de distribuição normal padrão Φ(z) utilizando essas ideias é apresentado a seguir. Por meio de
uma comparação dessa alternativa Monte Carlo com a primeira podemos verificar que houve uma grande
diminuição do erro de Monte Carlo no cálculo dessa integral, nessa nova abordagem. Muitas variantes e
melhorias nesse processo podem ser implementadas, mas nós não iremos discuti-las aqui.
Quadratura da normal padrão via simulação
Monte Carlo. Segunda forma de obter a
integral: forma clássica
import numpy as np
import math
import scipy.stats as sps
import matplotlib
import matplotlib.pyplot as plt
def pmcnorm(z, m = 2000):

x = np.random.uniform(0, abs(z), m)
p = (1/(2 * math.pi)**0.5)*np.exp(-(x**2)/2)
p = abs(z) * np.mean(p)
if z < 0:

p = 0.5 - p
else:

p += 0.5
return p

Exemplo
m = 15000 # número de pontos muito inferior ao caso anterior
z = 1.96
pmcnorm(z, m) # Estimativa de Monte Carlo
p = sps.norm.cdf(z) # valor real
p
Ordem de erro: O(mˆ(-1/2))
1/m**0.5
verificação da convergência
np.random.seed(1000)
x = np.random.uniform(0, abs(z), m)
pdf = (1/(2*math.pi)**0.5) * np.exp(-(x**2)/2)
if (z < 0):

cdf = 0.5 - abs(z) * np.cumsum(pdf) / np.arange(1,m+1)
else:

cdf = 0.5 + abs(z) * np.cumsum(pdf) / np.arange(1,m+1)
plt.plot(np.arange(1,m+1), cdf)
plt.plot(np.arange(1,m+1), [p]*m)
plt.xlabel('Iterações', fontsize=15)
plt.ylabel('P(Z<=z)', fontsize=15)

np.float64(0.9752498523098085)

6.4. QUADRATURAS GAUSSIANAS 101

np.float64(0.9750021048517795)

0.00816496580927726

Text(0.5, 0, 'Iterações')

Text(0, 0.5, 'P(Z<=z)')

0 2000 4000 6000 8000 10000 12000 14000
Iterações

0.85

0.90

0.95

1.00

1.05

P(
Z<

=z
)

6.4 Quadraturas Gaussianas
As quadraturas gaussianas desempenham um papel preponderante na estatística, pois os principais
algoritmos de obtenção de probabilidades e quantis utilizam tais métodos implicitamente. Nesta seção,
apresentaremos, de forma bastante simplificada e sem aprofundar nos aspectos matemáticos mais técnicos,
o principal método de quadratura gaussiana. Os interessados em uma maior pormenorização desses
aspectos podem consultar inúmeros livros específicos. Recomendamos por exemplo a leitura de Quarteroni
et al. [2000].

A base dessas quadraturas são as interpolações baseadas em polinômios ortogonais. Seu uso extrapola o
tema das quadraturas numéricas, podendo ser usados para aproximar soluções de quadrados mínimos e
diferenciação numérica. Uma quadratura gaussiana de n pontos é aquela que fornece resultados exatos
para a integração de um polinômio de grau igual ou inferior a 2n − 1. O domínio das quadraturas é, sem
perda de generalidade e por convenção, assumido como sendo [−1, 1]. A regra geral para a quadratura
gaussiana de n pontos para uma função f(x), no domínio [−1, 1], é dada por

∫ 1

−1
f(x)dx ≈

n∑
i=1

wif(xi), (6.16)

em que xi e wi são denominados de nós e pesos, respectivamente, da quadratura.

Os nós são valores do intervalo [−1, 1] e os pesos são positivos. Devemos escolhê-los de forma apropriada
para que o resultado da integral seja aproximado de forma acurada pela soma da direita. Muitas vezes,

102 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

usamos uma função peso w(xi), tal que a integral (Equation 6.16) possa ser representada por∫ 1

−1
f(x)dx =

∫ 1

−1
w(x)g(x)dx ≈

n∑
i=1

wig(xi), (6.17)

em que g(x) é tal que f(x) = w(x)g(x) e wi nesse caso são pesos alternativos.

Por exemplo, para o caso específico da função f(x) = e2x, usando pesos w1 = w2 = 1 e nós x1 =
√

3/3 e
x2 = −

√
3/3, no domínio de −1 a 1 resulta em∫ 1

−1
e2xdx ≈ f(

√
3/3) + f(−

√
3/3) = 3,4882.

O valor exato da integral é ∫ 1

−1
e2xdx =

[
e2x

2

]1

−1
= 3,6269.

É surpreendente que a soma de f(x1) + f(x2) resulte em valores exatos para polinômios de grau até
3, 2n − 1, pois n = 2. O que temos que fazer é encontrar mecanismos para obter os pesos e os nós de
integração. Para um intervalo de integração diferente de [−1, 1], ou seja, [a, b], b > a, temos que a seguinte
transformação não altera a precisão da integração∫ b

a
f(x)dx = b − a

2
∫ 1

−1 f

(
b − a

2 x + a + b

2

)
dx

≈ b − a

2
∑n

i=1 wif

(
b − a

2 xi + a + b

2

)
.

Vale a pena ressaltar que os nós utilizados nas quadraturas são as raízes dos polinômios ortogonais de
alguma das famílias gaussianas, normalmente empregadas. Entre elas, podemos citar os polinômios de
Legendre, Laguerre, Hermite, Chebyshev e Jacobi. Descreveremos apenas a quadratura Gauss-Legendre
na sequência.

A quadratura denominada Gauss-Legendre é utilizada para intervalos de integração definidos por [−1, 1],
podendo ser extrapolado para intervalos mais gerais, se utilizarmos a expressão (Equation 6.18). Assim,
para o domínio [−1, 1], a quadratura Gauss-Legendre pode ser aplicada por

∫ b

a

f(x)dx ≈


n∑

i=1
wif(xi) para a = −1 e b = 1

n∑
i=1

wig(yi) para a e b reais quaisquer,
(6.18)

em que g(y) é dada por

g(y) = b − a

2 f

(
b − a

2 x + a + b

2

)
, (6.19)

em que y = (b − a)x/2 + (b + a)/2.

O próximo passo, na aplicação das quadraturas gaussianas, é calcular os nós e pesos para cada uma delas.
Apresentaremos isso, na forma de uma sequência de passos. Utilizaremos as seguintes quantidades para
todos os métodos. O escalar µ0 que é definido por

µ0 =
∫ b

a

w(x)dx

6.4. QUADRATURAS GAUSSIANAS 103

e os vetores de coeficientes a (n × 1) e b (n − 1 × 1), sendo n o número de pontos da quadratura a ser
realizada.

Posteriormente, ainda utilizaremos uma matriz denotada por J, (n × n), para a qual obteremos os
autovalores e autovetores. Como utilizaremos um problema de álgebra, solucionado pela obtenção de
autovalores e autovetores, esse método é conhecido como algoritmo de Golub–Welsch. Descreveremos,
inicialmente, a obtenção dos vetores a e b e da constante µ0 para o método de quadratura Gauss-Legendre.
Detalhes técnicos de como isso pode ser realizado e as bases teóricas podem ser encontradas em Quarteroni
et al. [2000].

Para a quadratura Gauss-Legendre temos:

1. faça µ0 = 2;

2. a = 0 (n × 1);

3. b = [bj] (n − 1 × 1), tal que

bj = j√
4j2 − 1

, j = 1, 2, . . . , n − 1.

Definidas as quantidades necessárias a, b e µ0, devemos aplicar a segunda parte do algoritmo para obter
os nós xi’s e os pesos wi’s, i = 1, 2, . . ., n. Utilizamos, para isso, o algoritmo de Golub–Welsch, pelo qual
determinamos a matriz J a partir dessas quantidades e determinamos seus autovalores e autovetores. A
matriz J é tridiagonal simétrica definida por

J =


a1 b1 0
b1 a2 b2 0
0 b2 a3 b3 0 . . .
0 0
. 0 bn−2 an−1 bn−1
. 0 bn−1 an

 .

Determinamos os autovalores e autovetores de J e os denotamos por

x∗ =


x∗

1
x∗

2
...

x∗
n

 e P =


p11 p21 · · · pn1
p12 p22 · · · pn2
...

...
p1n p2n · · · pnn

 ,

respectivamente.

Modificamos a notação usual para representar os elementos de uma matriz. Assim, verificamos que na
matriz P, o primeiro índice do elemento pij refere-se ao índice do i-ésimo autovetor e o segundo índice ao
j-ésimo elemento desse autovetor. Por isso, a notação não usual dos índices nessa matriz. Portanto, cada
coluna de P, corresponde a um dos n autovetores associados a cada um dos autovalores x∗

i ordenados em
ordem decrescente.

Em seguida, podemos obter os nós (pontos), tomando simplesmente os autovalores em ordem crescente,
ou seja, o vetor dos nós x, com componentes xi, é definido por

x =


x1
x2
...

xn

 =


x∗

n

x∗
n−1
...

x∗
1

 , (6.20)

104 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

em que x∗
i é o i-ésimo autovalor da matriz tridiagonal J.

Podemos constatar que os nós são os autovalores dessa matriz apresentados em ordem reversa, ou seja,
em ordem crescente ao invés da habitual forma de apresentá-los, que é a ordem decrescente. Finalmente,
podemos obter os pesos como sendo uma função de µ0 e dos primeiros elementos de cada autovetor de
J, também considerado em ordem reversa, considerando as ordenações clássicas do maior para o menor
autovalor. Essa função busca realizar uma normalização adequada para garantir a validade da quadratura.

Assim, temos que os pesos das quadraturas são obtidos por

w =



w1
w2
w3
...
wn−1
wn


= µ0



p2
n,1

p2
n−1,1

p2
n−2,1

...
p2

2,1
p2

1,1


, (6.21)

sendo pij o j-ésimo elemento do i-autovetor de J correspondente ao i-autovalor x∗
i .

Podemos observar que os valores wi’s dependem de pij em ordem reversa de importância, sendo essa
ordem determinada pelos autovalores de J.

Com os pesos, nós e funções pesos, quando ela não for a unidade, podemos aplicar os métodos de
quadraturas apresentados anteriormente. Nosso próximo passo é implementar funções para obter os pesos
e os nós e exemplificarmos.
Função para obter nós e pesos
da quadratura Gauss-Legendre
import numpy as np
import scipy as sp
def gausslegendquad(n):

n = int(n)
if n < 0:

print('É necessário um número não negativo de nós!')
return

if n == 0:
return {'xi':[], 'wi': []}

i = np.arange(1, n)
mu0 = 2
b = i / np.sqrt(4 * i**2 - 1)
J = np.zeros((n*n))
J[(n + 1) * (i-1) + 1] = b
J[(n + 1) * i - 1] = b
J = J.reshape(n, n)
va, ve = sp.linalg.eigh(J)
w = ve[0,:]
w = mu0 * w**2
return {'xi': va, 'wi': w}

função genérica para obter a
quadratura no [-1,1]
def quadgl(func, n = 8):

gl = gausslegendquad(n)
res = np.sum(gl['wi'] * func(gl['xi']))
return res

6.4. QUADRATURAS GAUSSIANAS 105

exemplo: f(x) = exp(2x)
int_{-1}ˆ{1} f(x) dx - vetorizada
def e2x(x):

return np.exp(2*x)

função polinomial
def p3(x):

return x**3-0.4*x**2+2.3*x+5
Exemplos
n = 4
gausslegendquad(n)
n = 8
print('eˆ(2x): ',quadgl(e2x, n))
print('Valor exato: ',(e2x(1)-e2x(-1))/2)
print('p3: ',quadgl(p3, 2))
print('Valor exato wolfram: ',9.73333)

{'xi': array([-0.86113631, -0.33998104, 0.33998104, 0.86113631]),
'wi': array([0.34785485, 0.65214515, 0.65214515, 0.34785485])}

e^(2x): 3.626860407846865
Valor exato: 3.626860407847019
p3: 9.73333333333333
Valor exato wolfram: 9.73333

No exemplo anterior, usamos a função sp.linalg.eigh() do scipy.linalg, pois a função
np.linalg.eig() não retorna os autovalores necessariamente em ordem. A função eigh, por
sua vez, retorna os autovalores ordenados, mas em ordem crescente de valores e não na ordem decrescente,
como é feito em muitos outros programas. Podemos aplicar na normal as quadraturas, para ilustrarmos
os casos em que os limites não são −1 e 1, incluindo os exemplos anteriores.
import math
import scipy as sp
função genérica para trocar os
limites de integração de -1 a 1
para a e b (finitos)
def hx(func, x, a = -1, b = 1):

aux = (b - a) / 2
h = aux * func(aux * x + (a + b) / 2)
return h

modificação da quadGL para contemplar
outros limites que não sejam o -1 e 1
def quadglab(func, n = 8, a = -1, b = 1):

gl = gausslegendquad(n)
h = hx(func, gl['xi'], a, b)
res = np.sum(gl['wi'] * h)
return res

X ~ N(mu, sig)
def pnormal(x, mu = 0, sigma = 1, n = 16):

if math.isclose(x, mu):
return 0.5

106 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

else:
if math.isclose(mu, 0) and math.isclose(sigma, 1):

z = x
else:

z = (x - mu) / sigma
res = quadglab(sp.stats.norm.pdf, n, 0, abs(z))
if (x < mu):

res = 0.5 - res
else:

res += 0.5
return res

integrar e2x de 1 até 3
a = 1
b = 3
quadglab(e2x, 8, a, b)
print('Valor exato: ',(e2x(b)-e2x(a))/2)
quadglab(p3, 2, a, b) # valor exato 35,73333
x = 1.96
pnormal(x)
print('Valor exato: ',sp.stats.norm.cdf(x))

np.float64(198.01986869689384)

Valor exato: 198.01986869690222

np.float64(35.73333333333333)

np.float64(0.9750021048517794)

Valor exato: 0.9750021048517795

Nas quadraturas anteriores, podemos substituir nossa função que calcula os nós e os pesos, por outra, que
utiliza um método de obtenção de autovalores e autovetores mais eficiente. Esse método é aplicável a
matrizes simétricas tridiagonais. O script a seguir apresenta essa implementação. Precisamos apenas
fornecer um vetor com a diagonal da matriz e outro com os elementos das duas diagonais secundárias, que
são idênticos. A função utilizada foi a sp.linalg.eigh_tridiagonal() da biblioteca scipy.
Função para obter nós e pesos
da quadratura Gauss-Legendre
Essa versão dispensa a criação
da matriz J, por aplicar um
processo de obtenção de
autovalores e autovetores em
matrizes tridiagonais - + rápido
import numpy as np
import scipy as sp
def gausslegendquad2(n):

n = int(n)
if n < 0:

print('É necessário um número não negativo de nós!')
return

if n == 0:
return {'xi':[], 'wi': []}

i = np.arange(1, n + 1)

6.5. NEWTON-RAPHSON 107

i1 = np.delete(i,n - 1)
mu0 = 2
b = i1 / np.sqrt(4 * i1**2 - 1)
a = np.zeros(n)
va, ve = sp.linalg.eigh_tridiagonal(a, b)
w = ve[0,:]
w = mu0 * w**2
return {'xi': va, 'wi': w}

n = 4
gausslegendquad2(n)

{'xi': array([-0.86113631, -0.33998104, 0.33998104, 0.86113631]),
'wi': array([0.34785485, 0.65214515, 0.65214515, 0.34785485])}

6.5 Newton-Raphson
Vamos apresentar o método numérico de Newton-Raphson para obtermos a solução da equação

z =Φ−1(p),

em que 0 < p < 1 é o valor da função de distribuição da normal padrão, Φ−1(p) é a função inversa da
função de distribuição normal padrão no ponto p e z o quantil correspondente, que queremos encontrar
dado um valor de p. Podemos apresentar esse problema por meio da seguinte equação

Φ(z) − p =0,

em que Φ(z) é a função de distribuição normal padrão avaliada em z. Assim, nosso objetivo é encontrar
os zeros da função f(z) = Φ(z) − p. Em geral, podemos resolver essa equação numericamente utilizando o
método de Newton-Raphson, que é um processo iterativo. Assim, devemos ter um valor inicial para o
quantil para iniciarmos o processo e no (n + 1)-ésimo passo do processo iterativo podemos atualizar o
valor do quantil por

zn+1 = zn − f(zn)
f ′(zn) , (6.22)

em que f ′(zn) é derivada de primeira ordem da função para a qual queremos obter as raízes avaliada no
ponto zn. Para esse caso particular temos que

zn+1 = zn − [Φ(zn) − p]
ϕ(zn) , (6.23)

sendo ϕ(zn) a função densidade normal padrão. Como valores iniciais usaremos uma aproximação grosseira,
pois nosso objetivo é somente demonstrar o método. Assim, se p for inferior a 0,5 utilizaremos z0 = −0,1,
se p > 0,5, utilizaremos z0 = 0,1. Obviamente se p = 0, a função deve retornar z = 0. A função qPhi a
seguir retorna os quantis da normal, dados os valores de p entre 0 e 1, da média real µ e da variância
real positiva σ2, utilizando para isso o método de Newton-Raphson e a função phnorm de Hasting para
obtermos o valor da função de distribuição normal padrão.

108 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

função auxiliar para retornar o valor da
função densidade normal padrão
def phi(z):

return (1 / (2 * math.pi)**0.5 * np.exp(-z * z / 2))

Método de Newton-Raphson para obtermos quantis
da distribuição normal com média real mu e desvio
padrão real positivo sig, dado 0 < p < 1
utiliza as funções phi(z) e phnorm(z),
apresentadas anteriormente
def qphi(p, mu = 0, sig = 1, func = phnorm):

eps = 1e-11
if p <= 0 or p >= 1:

print('Valor de p deve estar entre 0 e 1!')
return

if sig <= 0:
print('Desvio padrão deve ser maior que 0!')
return

if abs(p - 0.5) <= eps:
z1 = 0

else:
if p < 0.5:

z0 = -0.1
else:

z0 = 0.1
it = 1
itmax = 2000
convergiu = False
while convergiu == False:

z1 = z0 - (func(z0) - p) / phi(z0)
if abs(z0 - z1) <= eps * abs(z0) or it > itmax:

convergiu = True
it = it + 1
z0 = z1

return {'x': z1 * sig + mu, 'iter': it - 1}

Exemplo
p = 0.975
mu = 0
sig = 1
print('q normal Hasting: ',qphi(p, mu, sig, phnorm))
print('q normal Gauss-Legendre: ',qphi(p, mu, sig, pnormal))
print('Valor exato: ',sps.norm.ppf(p, mu, sig)) #para fins de comparação

q normal Hasting: {'x': np.float64(1.9599629237446643), 'iter': 8}
q normal Gauss-Legendre: {'x': np.float64(1.9599639845400563), 'iter': 8}
Valor exato: 1.959963984540054

Poderíamos, ainda, ter utilizado o método da secante, uma vez que ele não necessita da derivada de
primeira ordem, mas precisa de dois valores iniciais para iniciar o processo e tem convergência mais lenta.
O leitor é incentivado a consultar Press et al. [1992] para obter mais detalhes. Também poderia ter sido
usada a função pnorm, que utiliza o método trapezoidal. Nesse caso a precisão seria maior, mas o tempo

6.6. FUNÇÕES PRÉ-EXISTENTES NO PYTHON 109

de processamento também é maior. Para isso bastaria usar na chamada como valor do argumento func
a função pnorm. Também seria possível chamar mcpnorm ou pmcnorm ou qualquer outra implementação
eficiente que tivermos para a quadratura.

Felizmente o Python também possui rotinas pré-programadas para este e para muitos outros modelos prob-
abilísticos, que nos alivia da necessidade de programar rotinas para obtenção das funções de distribuições
e inversas das funções de distribuições dos mais variados modelos probabilísticos existentes.

6.6 Funções Pré-Existentes no Python
Na Tabela Table 3.1 apresentamos uma boa parte das rotinas para gerarmos dados dos mais variados
modelos probabilísticos contemplados pelo Python. Logo após a tabela mencionada, apresentamos os
procedimentos Python da biblioteca scipy.stats para obtermos a função de probabilidade ou densidade, a
função de distribuição e a função quantil. Devemos consultar os recursos desta biblioteca para conhecermos
os mais diferentes métodos associados a cada um dos seus objetos.

6.7 Exercícios
1. Comparar a precisão dos três algoritmos de obtenção da função de distribuição normal apresentados

neste capítulo. Utilizar a função normal.cdf() como referência.

2. Utilizar diferentes números de simulações Monte Carlo para integrar a função de distribuição normal
e estimar o erro de Monte Carlo relativo e absoluto máximo cometidos em 30 repetições para cada
tamanho. Utilize os quantis 1,00, 1,645 e 1,96 e a função normal.cdf() como referência.

3. A distribuição Cauchy é um caso particular da t de Student com ν = 1 grau de liberdade. A
densidade Cauchy é dada por:

f(x) = 1
π(1 + x2)

Utilizar o método trapezoidal estendido para implementar a obtenção dos valores da distribuição
Cauchy. Podemos obter analiticamente também a função de distribuição e sua inversa. Obter tais
funções e implementá-las no Python. Utilize as funções scipy.stats pré-existentes para checar os
resultados obtidos.

4. Utilizar o método Monte Carlo descrito nesse capítulo, para obter valores da função de distribuição
Cauchy, apresentada no exercício proposto 3. Utilizar alguns valores numéricos para ilustrar e
comparar com funções implementadas em Python para esse caso. Qual deve ser o número mínimo
de simulações Monte Carlo requeridas para se ter uma precisão razoável.

110 CHAPTER 6. APROXIMAÇÃO DE DISTRIBUIÇÕES

Chapter 7

Conjuntos e Elementos de Análise
Combinatória em Python

Neste capítulo, pretendemos apresentar os conceitos básicos de análise combinatória e de conjuntos,
de uma forma bastante simples. Vamos fazer algumas funções simples para cálculo de probabilidades
computacionalmente em alguns casos particulares. Vimos no capítulo 1 os objetos conjuntos (set) do
Python. O operador set() é usado para criar um conjunto. O argumento da função set() é uma lista ou
uma tupla. São imutáveis, não ordenados e não possuem elemento duplicados.

Várias funções podem ser usadas para este tipo de objeto em Python, como pertencimento (in), união
(union ou |), interseção (intersection ou &) e diferença simétrica (symmetric_difference ou ˆ), como
foi ilustrado no capítulo 1. Também é possível obter diferenças, tipo A-B entre dois conjuntos A e B.

A análise combinatória nos permite resolver inúmeros problemas de probabilidade. Problemas que ocorrem
normalmente são listados a seguir:

a. selecionar entre n elementos x deles, 0 ≤ x ≤ n, sem repetir nenhum elemento (amostragem sem
reposição) onde a ordem não importa: combinação;

b. selecionar entre n elementos x deles, 0 ≤ x ≤ n, podendo repetir os elementos selecionados
(amostragem sem reposição) onde a ordem importa: arranjos;

c. distribuir n elementos em x, x = n, posições de formas diferentes: permutações;
d. caminhos diferentes possíveis de se percorrer com n1 possibilidades na primeira etapa, n2 possibili-

dades na segunda etapa e assim sucessivamente até nk possibilidades na k-ésima etapa: contagem.

Assim, queremos obter todas as possíveis combinações, permutações, arranjos ou caminhos (contagens)
possíveis na resolução de algum problema de probabilidade ou de outra situação em geral.

7.1 Introdução a Análise Combinatória no Python
A análise combinatória e os métodos de contagem são essenciais para se entender probabilidade. No
Python podemos computar o número de combinações dado por(

n

x

)
= n!

x!(n − x)! , para 0 ≤ x ≤ n,

por math.comb(n, x). Já á listagem das combinações de n tomados x a x é obtida pelo comando
combinations(range(1,n+1), x) do pacote itertools que deve ser importado. O primeiro argumento
da função combinations é uma lista, que no caso foi de uma lista indo de 1 a n, em que usamos a função

111

112 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

range para obter essa lista. Podemos, em vez disso, usar qualquer outra lista. Podemos usar ainda a
função comb do scipy.special para obtermos o número de combinações de forma alternativa.

O comando combinations(n, x) do pacote itertools retorna um objeto que deve ser convertido para
uma lista com

(
n
x

)
elementos, em que cada elemento da lista corresponde a uma tupla de x elementos (a

combinação).

O script a seguir ilustra um caso particular destes comandos:
from itertools import combinations
from scipy import special as sps
import math
n = 4
x = 2
math.comb(n, x)
sps.comb(n, x) # resultado é um float
comb = list(combinations(range(1,n+1), x))
print(comb)
listando a combinação 0 da lista
print(comb[0])
len(comb) # número de combinações alternativo
retorna uma combinação de letras
list(combinations(['a','b','c'], 2))

6

np.float64(6.0)

[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
(1, 2)

6

[('a', 'b'), ('a', 'c'), ('b', 'c')]

7.2 Permutações e Arranjos
O número total de permutações de n objetos é dado por n! e com o uso do pacote itertools, podemos
listá-las em uma lista de tamanho n! com cada elemento sendo uma tupla de tamanho n, com a função
permutations();

Também podemos tomar os arranjos de n tomados x a x, com o mesmo comando, cujo número de arranjos
é dado por

An,x = n!
(n − x)! ,

sendo que no Python esse valor é obtido por meio da função math.perm(n, x).

O script a seguir ilustra estes comandos:
Obter todas as permutações de n
em n posições - permutação
ou em x posições x<n, arranjo
from itertools import permutations
import math
n = 3
permutações

7.2. PERMUTAÇÕES E ARRANJOS 113

perm = list(permutations(range(1,n+1)))
print(perm)
arranjos
x = 2 # x < n
math.perm(n, x)
arran = list(permutations(range(1,n+1), x))
print(arran)
Imprime as permutações
for i in list(perm):

print(i)
type(perm[0])

[(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]

6

[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)

tuple

Para sortearmos permutações ou arranjos de forma aleatória, o comando random.sample(range(1,n+1),n)
retorna uma permutação de n tomados n a n. Se quisermos um sorteio de n tomados x a x
random.sample(range(1,n+1),x), ou seja, um arranjo de um resultado com x elementos sem repetição
(amostra sem reposição). Não é referente ao caso em questão (permutações e arranjos), mas se
desejarmos amostragens com reposição, como requerido nos métodos bootstrap, usamos a função
random.choices(range(1,n+1),x), em que x é um valor entre 1 e n. Ambos os comando requerem que
importemos a biblioteca random do Python. O script a seguir ilustra estes comandos:
Obter amostras aleatórias de
permutações ou arranjos
(sem reposição), ou amostras com
reposição
import random
n = 5
amostras de permutações
amostra = random.sample(range(1,n+1), n)
print(amostra)
x = 3 # x < n
amostras de arranjos
amostra = random.sample(range(1,n+1), x)
print(amostra)
amostras com reposição
x = 3
amos = random.choices(range(1,n+1), k=x)
print(amos)

[3, 2, 4, 1, 5]
[4, 3, 2]
[5, 5, 2]

114 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

7.3 Contagem
O princípio fundamental da contagem, conhecido por princípio multiplicativo, é utilizado para encontrar
o número de possibilidades para um evento constituído de k etapas. As etapas devem ser sucessivas e
independentes. Se um evento tem duas (k = 2) etapas, sendo que a primeira possui n1 possibilidades e a
segunda, n2 possibilidades, então existem n1 × n2 possibilidades.

Assim, o princípio fundamental da contagem é a multiplicação das opções de cada etapa para determinar
o total de possibilidades. Esse conceito é importante para a análise combinatória, área da matemática que
reúne os métodos para resolução de problemas incluindo a contagem entre eles e, por isso, é muito útil na
investigação para determinar a probabilidade de fenômenos naturais.

Para obtermos todas as possibilidades em k etapas, cada uma com a mesma quantidade n de possibilidades
criamos uma classe Python com algumas funções. A função contag(n, k) retorna todas as contagens
a partir de n possibilidades em k etapas, como, por exemplo, com n = 2 sexos de animais em k = 3
nascimentos, ou n = 2 portas de um prédio em k = 2 possibilidades, correspondentes às entradas e às
saídas do prédio. Também fizemos o mesmo quando temos uma lista (iterador qualquer) de tamanho k
correspondendo às k etapas em que cada elemento refere-se ao número de possibilidades daquela etapa.

A pergunta, do segundo exemplo, de quais maneiras diferentes uma pessoa pode entrar e sair do edifício
com 2 entradas e duas saídas é o que pretendemos listar (enumerar). A função proposta usa um processo
recursivo, em que em cada chamada é atualizada a contagem em particular. A recursividade ocorre na
função permuta ou permutav, para o caso de uma lista de etapas.
Classe para obter as contagens de x
possibilidades em cada k etapas: x, k vezes
ou x = [n1,n2,...,nk](lista com k nós).
Usa overload e ilustra a criação
de uma classe Python
from multipledispatch import dispatch
import numpy as np
class Cont:

def permuta(self,z, pos, permn, n, k, prim):
if prim:

z = np.full(k + 1, 1)
prim = False
permun = np.append(permn,[z[1:(k+1)]],axis=0)

else:
permun = permn
if z[pos] < n:

z[pos] = z[pos] + 1
permun = np.append(permun,[z[1:(k+1)]],axis=0)

else:
nachei = True
if pos == k:

i = pos - 1
paratras = True

else:
i = pos + 1
paratras = False

while nachei and i >= 1 and i <= k:
if z[i] < n:

z[i] = z[i] + 1
if paratras:

7.3. CONTAGEM 115

z[(i+1):(k+1)] = 1
permun = np.append(permun,[z[1:(k+1)]],axis=0)
pos = k
nachei = False

else:
if (pos == k):

i = i - 1
else:

i = i + 1
if np.sum(z[1:(k+1)]) == n * k:

return permun
else:

return self.permuta(z, pos, permun, n, k, prim)
def permutav(self,z, pos, permn, x, k, prim):

if prim:
k = len(x)
pos = k
z = np.full(k + 1, 1)
prim = False
permun = np.append(permn,[z[1:(k+1)]],axis=0)

else:
permun = permn
if z[pos] < x[pos-1]:

z[pos] = z[pos] + 1
permun = np.append(permun,[z[1:(k+1)]],axis=0)

else:
nachei = True
if pos == k:

i = pos - 1
paratras = True

else:
i = pos + 1
paratras = False

while nachei and i >= 1 and i <= k:
if z[i] < x[i-1]:

z[i] = z[i] + 1
if paratras:

z[(i+1):(k+1)] = 1
permun = np.append(permun,[z[1:(k+1)]],axis=0)
pos = k
nachei = False

else:
if pos == k:

i = i - 1
else:

i = i + 1
if np.sum(z[1:(k+1)]) == sum(x):

return permun
else:

return self.permutav(z, pos, permun, x, k, prim)
@dispatch(int, int)

116 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

def contag(self, x, k):
prim = True
permn = np.empty((0, k), int)
z = np.array([])
pos = k
n = x
res = self.permuta(z, pos, permn, n, k, prim)
return res

@dispatch(list)
def contag(self, x):

k = len(x)
pos = k
prim = True
permn = np.empty((0, k), int)
z = np.array([])
res = self.permutav(z, pos, permn, x, k, prim)
return res

Exemplo de uso
res = Cont()
k = 3
x = 3
val = res.contag(x, k)
print(val)
x = [3, 4, 2]
res.contag(x)

[[1 1 1]
[1 1 2]
[1 1 3]
[1 2 1]
[1 2 2]
[1 2 3]
[1 3 1]
[1 3 2]
[1 3 3]
[2 1 1]
[2 1 2]
[2 1 3]
[2 2 1]
[2 2 2]
[2 2 3]
[2 3 1]
[2 3 2]
[2 3 3]
[3 1 1]
[3 1 2]
[3 1 3]
[3 2 1]
[3 2 2]
[3 2 3]
[3 3 1]
[3 3 2]

7.3. CONTAGEM 117

[3 3 3]]

array([[1, 1, 1],
[1, 1, 2],
[1, 2, 1],
[1, 2, 2],
[1, 3, 1],
[1, 3, 2],
[1, 4, 1],
[1, 4, 2],
[2, 1, 1],
[2, 1, 2],
[2, 2, 1],
[2, 2, 2],
[2, 3, 1],
[2, 3, 2],
[2, 4, 1],
[2, 4, 2],
[3, 1, 1],
[3, 1, 2],
[3, 2, 1],
[3, 2, 2],
[3, 3, 1],
[3, 3, 2],
[3, 4, 1],
[3, 4, 2]])

No exemplo anterior tivemos várias novidades. Criamos uma classe pela primeira vez. Nesta classe
implementamos quatro funções. Entre elas, as duas com a função de realizar as listagens de todas
as contagens foram implementadas com chamadas recursivas. As outras duas, foram duas versões
de uma mesma função com diferentes argumentos, a função contag. Para isso usamos a técnica de
overloading. Assim, usamos o pacote multipledispatch de onde importamos from multipledispatch
import dispatch. O comando @dispatch(int, int) ou @dispatch(list) antes da definição da função
contag indica que ela tem diferentes argumentos. A primeira definição possui dois argumentos inteiros e
a segunda, um argumento, correspondente a uma lista. Para exemplificar, criamos um objeto da classe
Cont, objeto res, por meio do qual chamamos o método contag duas vezes com argumentos diferentes, o
que faz com que ao ser executado, o interpretador escolha a opção apropriada.

Se, por exemplo, quiséssemos obter todas as possibilidades de nascimento quanto ao sexo de famílias de
até 4 filhos, teríamos o seguinte espaço amostral de nosso experimento com 24 = 16 elementos:
Espaço amostral dos filhos
quanto ao sexo
com n = 4 e 0 <= x <= n
filhos = Cont()
n = 4
res = filhos.contag(2, n) - 1
sexo = ['F','M']
type(res[0])
print(np.array(sexo)[res])

numpy.ndarray

[['F' 'F' 'F' 'F']
['F' 'F' 'F' 'M']

118 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

['F' 'F' 'M' 'F']
['F' 'F' 'M' 'M']
['F' 'M' 'F' 'F']
['F' 'M' 'F' 'M']
['F' 'M' 'M' 'F']
['F' 'M' 'M' 'M']
['M' 'F' 'F' 'F']
['M' 'F' 'F' 'M']
['M' 'F' 'M' 'F']
['M' 'F' 'M' 'M']
['M' 'M' 'F' 'F']
['M' 'M' 'F' 'M']
['M' 'M' 'M' 'F']
['M' 'M' 'M' 'M']]

O Python já tem implementado esses recursos para realizar contagens. A biblioteca itertools possui a
função product que faz o mesmo papel de nossas funções implementadas na classe cont.
import itertools
l1 = ['F','M']
list(itertools.product(l1, repeat=4))
n = 3
l2 = list(range(1, n+1))
list(itertools.product(l2, repeat=3))
x = [3, 4, 2]
d3 = {}
for i in range(len(x)):

d3[i]= list(range(1, x[i]+1))
l3 = list(d3.values())
result = itertools.product(*l3)
print(list(result))

[('F', 'F', 'F', 'F'),
('F', 'F', 'F', 'M'),
('F', 'F', 'M', 'F'),
('F', 'F', 'M', 'M'),
('F', 'M', 'F', 'F'),
('F', 'M', 'F', 'M'),
('F', 'M', 'M', 'F'),
('F', 'M', 'M', 'M'),
('M', 'F', 'F', 'F'),
('M', 'F', 'F', 'M'),
('M', 'F', 'M', 'F'),
('M', 'F', 'M', 'M'),
('M', 'M', 'F', 'F'),
('M', 'M', 'F', 'M'),
('M', 'M', 'M', 'F'),
('M', 'M', 'M', 'M')]

[(1, 1, 1),
(1, 1, 2),
(1, 1, 3),
(1, 2, 1),
(1, 2, 2),

7.4. CONJUNTOS EM PYTHON 119

(1, 2, 3),
(1, 3, 1),
(1, 3, 2),
(1, 3, 3),
(2, 1, 1),
(2, 1, 2),
(2, 1, 3),
(2, 2, 1),
(2, 2, 2),
(2, 2, 3),
(2, 3, 1),
(2, 3, 2),
(2, 3, 3),
(3, 1, 1),
(3, 1, 2),
(3, 1, 3),
(3, 2, 1),
(3, 2, 2),
(3, 2, 3),
(3, 3, 1),
(3, 3, 2),
(3, 3, 3)]

[(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 3, 1), (1, 3, 2), (1, 4, 1), (1, 4, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2), (2, 3, 1), (2, 3, 2), (2, 4, 1), (2, 4, 2), (3, 1, 1), (3, 1, 2), (3, 2, 1), (3, 2, 2), (3, 3, 1), (3, 3, 2), (3, 4, 1), (3, 4, 2)]

7.4 Conjuntos em Python
Vamos relembrar as principais funções dos objetos set, conjuntos em Python, para podermos realizar
algumas operações simples. Os conjuntos no Python é uma coletânea de elementos sem a ocorrência de
valores com multiplicidades. Os conjuntos são criados pelo método set ou pelo uso de chaves. Portanto,
x = set([1,2,3]) ou x={1,2,3} é um conjunto, mas y= [1,2,3,3] não é, por ter elementos repetidos.
Se considerassemos o comando y= set([1,2,3,3]), este objeto seria um conjunto, pois o Python elimina
automaticamente os elementos repetidos na criação do conjunto.

Os argumentos da função set são as listas ou as tuplas. Podemos de forma eficiente usar os conjuntos
para remover elementos duplicados de uma lista ou tupla. Primeiro, aplicamos o operadorset() com
o argumento sendo uma lista ou uma tupla e aplicamos o argumento list() ou tupla() no resultado.
Outra vantagem dos conjuntos é que eles podem ter elementos de diferentes tipos. Os conjuntos são
imutáveis, pois seus elementos não podem ser trocados, mas podemos adicionar e remover elementos de
um conjunto em Python. Além do mais, os conjuntos são não ordenados. Vejamos um exemplo de como
criar um conjunto.
Criar conjuntos em Python
A = {'Laranja', 'Maçã', 'Pera'}
B = set(('Laranja'))
C = set(('Laranja',))
D = set((1,2,3,'Frutas'))
A
B
C
D

{'Laranja', 'Maçã', 'Pera'}

120 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

{'L', 'a', 'j', 'n', 'r'}

{'Laranja'}

{1, 2, 3, 'Frutas'}

Podemos adicionar ou remover elementos em um conjunto. Os elementos que são argumentos das funções
set.add() ou set.update() devem ser imutáveis como as tuplas ou as strings para o primeiro método e
qualquer objeto iterador como as listas, para o segundo. Se o argumento for uma lista, ocorrerá um erro no
método add. Para remover um elemento de um conjunto, podemos usar métodos como o set.remove()
ou set.discard() ou set.pop(). O primeiro comando remove um elemento específico do conjunto e
retorna um erro, se o elemento não existir. O segundo remove o elemento, mas não acusa erro se o
elemento não existir, deixando o conjunto como estava anteriormente a sua aplicação. O terceiro remove
um elemento de forma aleatória do conjunto e não tem argumento. O método pop retorna o elemento
removido e atualiza (modifica) o conjunto no qual foi aplicado. Os métodos add e update diferem no
sentido do primeiro não suportar acrescentar uma lista ao conjunto. O método set.clear() remove
todos os elementos do conjunto. Veja o script com alguns exemplos:
adição e remoção de elementos
de um conjunto
x = {1,2,3,4}
y = [4,5,6,7]
x.update(y)
x
x.add(8)
x
x.remove(8)
x
x.discard(9) # não causa erro por não existir em x
x
x.pop()
x

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7, 8}

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7}

1

{2, 3, 4, 5, 6, 7}

O Python inclui algumas operações com conjuntos, sendo algumas delas:

• set.union(x, y): união dos conjuntos x e y, que corresponde ao conjunto de todos os elementos
presentes em x e em y, considerando apenas uma vez aqueles elementos com multiplicidade maior
que 1;

• set.intersect(x,y): interseção dos conjuntos x e y, que corresponde ao conjunto dos elementos
presentes simultaneamente em x e y;

• set.difference(x,y): conjunto da diferença entre os conjuntos x e y, consistindo no conjunto de
todos os elementos de x que não estão em y;

• x == y ou x != y: testa se dois conjuntos x e y são iguais ou se são diferentes, respectivamente;

• c in y: pertencimento, ou seja, testa se c é um elemento do conjunto y;

7.4. CONJUNTOS EM PYTHON 121

• set.symmetric_difference(x, y): é o conjunto dos elementos que estão ou em x ou em y, mas
não está em ambos simultaneamente.

operações com conjuntos
ilustrativas
y = set([1,2,3,3])
x = {3,4,5}
set.union(x,y)
x.union(y)
x # não modifica x
set.intersection(x,y)
set.difference(x,y)
x == y
x != y
t = tuple(set((1,2,3,3))) # removendo duplicados de uma tupla
t
type(t)
y = set([1,2,3])
x = {3,4,5}
set.symmetric_difference(y,x)

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 5}

{3, 4, 5}

{3}

{4, 5}

False

True

(1, 2, 3)

tuple

{1, 2, 4, 5}

Outras opções de operações básicas com conjuntos são as seguintes:

• y.issubset(x): retorna True se y está contido ou é igual ao conjunto x;
• x.issuperset(y): retorna True se x contém ou é igual ao conjunto y;
• x.isdisjoint(y): retorna True se x e y não tiverem elementos comuns, ou seja, se a interseção for

um conjunto vazio.
outras operações com conjuntos
x = {1,2,3,4,5}
y = {1, 3, 5}
y está contido em x
y.issubset(x)
x contém y
x.issuperset(y)
se x e y são disjuntos
x.isdisjoint(y)

True

122 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

True

False

7.5 Alguns Problemas de Probabilidade

Vamos apresentar alguns casos particulares como o caso das coincidências de aniversários. Para a
coincidência de aniversários, vamos considerar a coincidência de nascimento de um grupo de n pessoas
na mesma data e que o ano tem 365 dias. Consideramos também que a distribuição dos nascimentos ao
longo dos anos dos aniversários é aleatória uniforme, o que é uma forte suposição. A probabilidade de que
nenhuma pessoa tenha a mesma data de nascimento (evento A) em um grupo de n pessoas é:

P (A) =A365,n

365n
= 365!

(365 − n)!365n
.

Desejamos a probabilidade do evento complementar, que é dada por P (Ac) = 1 − P (A). Logo,

P (Ac) =1 − A365,n

365n
= 1 − 365!

(365 − n)!365n
,

que é a probabilidade de haver pelo menos uma coincidência de aniversários na mesma data.

Implementamos duas formas. Na primeira usamos a fórmula completa. Tomamos o logaritmo (usamos a
função gammaln da scipy.special) e ao final recuperamos tomando o exp do resultado. Na segunda alter-
nativa usamos a biblioteca math, em que o total de arranjos A365,n é obtido pelo comando math.perm(365,
n).

O programa da primeira alternativa em Python é:
import numpy as np
import matplotlib.pyplot as plt
from numpy.lib.scimath import log
from numpy import exp
from scipy.special import gammaln
Uso do log of gama para obter o log do fatorial
def ca(n):

invertendo o log (i.e. exp)
return 1 - exp(gammaln(365+1) - gammaln(365-n+1) -n*log(365))

n = np.arange(1, 100+1)
Gráfico
plt.plot(n, ca(n))
plt.show()

7.5. ALGUNS PROBLEMAS DE PROBABILIDADE 123

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Nossa segunda implementação é:
coincidência de aniversários
probabilidades
import math
def pca(n):

if type(n) == int:
n = [n]

log365 = math.log(365)
pc = np.empty(0)
for k in range(len(n)):

pc=np.append(pc,1-exp(math.log(math.perm(365, n[k]))-n[k]*log365))
return pc

n = np.arange(1, 100+1)
Gráfico
plt.plot(n, pca(n))
plt.show()

124 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

No segundo exemplo, vamos considerar a probabilidade de que uma comissão de tamanho m ao ser retirada
de um grupo de tamanho n aleatoriamente não contenha representantes de um grupo existente específico
de tamanho k entre os n elementos do grupo todo. Essa probabilidade é:

P (Não ser representado) =
(

n−k
m

)(
n
m

) .

O programa Python foi implementado e ilustramos com o exemplo dos senadores do Brasil, que possui
representantes das diferentes unidades federativas brasileiras. No Brasil temos n = 27 × 3 senadores, ou
seja, 81 senadores no total, sendo 3 de cada estado ou do Distrito Federal. Se vamos formar uma comissão
aleatória de m = 10 senadores, qual é a probabilidade de que uma unidade federativa qualquer contendo
k = 3 senadores não seja representada. Vimos por meio da análise da fórmula anterior que temos

(
n
m

)
maneiras diferentes de sortear comissões de tamanho m em n elementos do grupo todo. Se eliminarmos
do total n, os k que serão excluídos da composição da comissão, sobram n − k que podem ser amostrados
m a m. Assim, o número de comissões sem os k do grupo considerado é

(
n−k

m

)
. A razão entre estas

duas quantidades nos fornece a probabilidade desejada. O script com o exemplo dos senadores está
apresentado a seguir.
Probabilidade de uma comissão de m pessoas
não ter representante de um subgrupo de tamanho
k quando retirada uma comissão de tamanho m de
um grupo contendo n elementos, k < n e m <= n-k
from scipy import special as sps
def pnr(n , m, k):

pr = sps.comb(n-k, m) / sps.comb(n, m)
return pr

Exemplo
n = 27*3 # número de senadores no Brasil, 81 (3 em cada estado ou DF)
m = 10 # comissão de m deles
k = 3 # um estado qualquer fixado não ser representado
pnr(n,m,k)
m = range(1, 81+1)
plt.plot(m, pnr(n,m,k))

7.5. ALGUNS PROBLEMAS DE PROBABILIDADE 125

plt.show()
probabilidade de MG e DF
não serem representados na comissão
k = 6
m = 10
pnr(n,m,k)

np.float64(0.6698898265353962)

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0

np.float64(0.44129815640475195)

Nosso próximo exemplo refere-se às probabilidades em uma mão de pôquer, construindo as possibilidades
e probabilidades. Neste jogo podemos ter uma mão sem nada (sem pares, sem dois pares, sem trincas,
etc.), uma com um par, uma com dois pares, uma com uma trinca, uma com uma sequência (qualquer de
naipe), uma com flush (diferentes valores que não estão em sequência do mesmo naipe), uma com um full
house (trinca e par), uma com o four (quadra), uma com uma sequência do mesmo naipe e uma sequência
real do mesmo naipe (royal flush - do 10 ao Ás).

O número de possibilidades totais de distribuir 52 em um sorteio de 5 cartas (uma mão) é:(
52
5

)
= 52!

5!(52 − 5)! = 2.598.960.

• Para obtermos uma mão sem valor, temos que entender que o baralho é constituído de 52 cartas,
sendo 13 valores das cartas (Ás, 1, 2, · · ·, 10, Valete, Dama e Rei) e 4 naipes para cada valor
(espadas, paus, ouros e copas). O número de possibilidades de uma mão de cinco cartas (sorteio de
5 cartas sem reposição) conter uma mão sem valor, ouseja, sem pares, sem trincas, sem quadras,
sem sequências de naipes diferentes ou sem sequências do mesmo naipe é:

(
13
5

)((
4
1

))5
− 10

((
4
1

))5
− 4
(

13
5

)
+ 4 × 10 = = 1.302.540,

ou seja, é o número de cartas de diferentes valores com qualquer um dos 4 naipes
(13

5
)
45, subtraído de

todas as possibilidades das sequências de naipes diferentes 10 × 45 e das possibilidades de ter cartas de

126 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

diferentes valores com o mesmo naipe 4
(13

5
)
. Este valor deve ser adicionado das dez possíveis sequências

para cada um dos naipes 4 × 10. Esta adição se dá em razão de termos retirado as possibilidades de de ter
cartas de diferentes valores com o mesmo naipe, que incluí as 10 sequências do mesmo naipe possíveis e
novamente foi retirada quando eliminamos as possibilidades de termos 5 cartas de valores diferentes com
o mesmo naipe, que incluí as 10 sequências do mesmo naipe possíveis. Daí precisamos adiciona-las, uma
vez que elas foram retiradas duas vezes.

• Para a mão de um par simples temos:

(
13
1

)(
4
2

)(
12
3

)
43,

em que
(13

1
)

escolhe o valor do par,
(4

2
)

escolhe os naipes para o par,
(12

3
)

escolhe entre os 12 valores
remanescentes (não escolhido para o par) e 43, escolhe os naipes dos 3 valores diferentes do par.

• Para os dois pares temos:

(
13
1

)(
4
2

)(
12
1

)(
4
2

)(
11
1

)
4,

em que
(13

1
)

escolhe o valor do primeiro par,
(4

2
)

escolhe os naipes para o primeiro par,
(12

1
)

escolhe o
segundo par entre os 12 valores remanescentes,

(4
2
)

escolhe os naipes para o segundo par e
(11

1
)

escolhe os
valores entre os 11 valores remanescentes (não escolhido para os 2 pares) e 4, escolhe os naipes do valor
diferente dos dois pares.

• Para uma tripla temos:

(
13
1

)(
4
3

)(
12
2

)
42,

em que
(13

1
)

escolhe o valor da tripla,
(4

3
)

escolhe os naipes para a tripla,
(12

2
)

escolhe os 2 valores entre os
12 valores remanescentes, 42 escolhe os naipes para estes valores.

• Para a sequência:

10 × 45 − 10 × 4,

em que 10 escolhe entre as 10 possíveis sequências (do Ás ao 5, do 2 ao 6, até do 10 ao Ás) e o 45 escolhe
os naipes de cada valor. O resultado incluí as sequências do mesmo naipe, que devem ser retiradas, que
correspondem à 10 × 4 (sequências de mesmo naipe incluindo as reais).

• Para o flush (cartas do mesmo naipe):

(
13
5

)
× 4 − 10 × 4,

em que
(13

5
)

escolhe os 5 diferentes valores entre os 13 e 4 escolhe um dos naipes para os 5 valores. O
resultado incluí as sequências do mesmo naipe, que devem ser retiradas, que correspondem à 10 × 4
(sequências de mesmo naipe incluindo as reais).

7.5. ALGUNS PROBLEMAS DE PROBABILIDADE 127

• Para o full house (trinca e par):

(
13
1

)(
4
3

)(
12
1

)(
4
2

)

em que
(13

1
)

escolhe o valor para a trinca,
(4

3
)

escolhe os naipes da trinca,
(12

1
)

escolhe o valor do para
entre os 12 valores remanescentes e

(4
2
)

escolhe os naipes da dupla.

• Para a quadra (four):

(
13
1

)(
12
1

)
4

em que
(13

1
)

escolhe o valor para a quadra que necessariamente terá uma de cada naipe,
(12

1
)

escolhe um
valor para a carta remanescente dos 12 valores restantes e 4 escolhe um dos naipes da carta remanescente,
que não é o da quadra.

• Para as sequências do mesmo naipe (straight flush):

10 × 4 − 4,

pois são 10 sequências para um dos 4 naipes, subtraída das 4 sequências reais entre elas, do 10 ao Ás de
cada um naipe entre os quatro naipes possíveis.

• A sequência real (royal straight flush): tem uma única sequência possível do 10 ao Ás para cada um
dos quatro naipes, totalizando 4 possíveis sequências reais.

O programa a seguir cria um dataframe com todas essas contagens e calcula as probabilidades dividindo-as
pelo número total de combinações:
#Mão de pôquer
probabilidades
import pandas as pd
import numpy as np
from scipy import special as sps
poker = {

'none': sps.comb(13,5)*4**5 - 10*4**5 - 4*sps.comb(13,5) + 10*4,
'pair': 13*sps.comb(4,2)*sps.comb(12,3)*4**3,
'two.pairs': sps.comb(13,2)*sps.comb(4,2)**2*11*4,
'triple': 13*sps.comb(4,3)*sps.comb(12,2)*4**2,
'straight': 10*4**5 - 10*4,
'flush': 4*sps.comb(13,5) - 10*4,
'full.house': 13*sps.comb(4,3)*12*sps.comb(4,2),
'four': 13*sps.comb(4,4)*12*4,
'straight.flush': 10*4 - 4,
'royal.flush': 4 }

sum(poker.values()) - sps.comb(52,5) # conferir
poker
mão = list(poker.keys())
possibilidades = list(poker.values())

128 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

datapoker = pd.DataFrame({'mão': mão, 'possibilidades': possibilidades})
datapoker['probabilidades'] = list(poker.values()) / sps.comb(52,5)
datapoker
sum(datapoker['probabilidades'])

np.float64(0.0)

{'none': np.float64(1302540.0),
'pair': np.float64(1098240.0),
'two.pairs': np.float64(123552.0),
'triple': np.float64(54912.0),
'straight': 10200,
'flush': np.float64(5108.0),
'full.house': np.float64(3744.0),
'four': np.float64(624.0),
'straight.flush': 36,
'royal.flush': 4}

mão possibilidades probabilidades
0 none 1302540.0 0.501177
1 pair 1098240.0 0.422569
2 two.pairs 123552.0 0.047539
3 triple 54912.0 0.021128
4 straight 10200.0 0.003925
5 flush 5108.0 0.001965
6 full.house 3744.0 0.001441
7 four 624.0 0.000240
8 straight.flush 36.0 0.000014
9 royal.flush 4.0 0.000002

1.0

Nosso próximo exemplo refere-se à probabilidade da máxima diferença de uma lista enumerada ordenada.
Obter o maior gap (salto) (diferença máxima) entre dois números consecutivos no sorteio sem reposição
de m números entre os n primeiros inteiros de 1 a n, para m < n. No Python, o comando np.diff(x),
retorna as diferenças entre números consecutivos da lista x.

O programa a seguir, usa a função checkgap para retornar a máxima diferença de um interador qualquer.
A função maxgap, recebe n, m e k e calcula as probabilidades de cada caso. Para isso ela percorre todas as
combinações geradas por combinations retornando o máximo de cada combinação obtida em y e com o
comando mean(y == k) é obtida a probabilidade exata de P (X = k), sendo X a variável que representa a
maior diferença entre números inteiros consecutivos de uma amostra sem reposição de tamanho m obtida
entre n números inteiros, para m de 1 a n e k o valor da máxima diferença (valor da variável aleatória)
para o qual queremos calcular a probabilidade de ocorrência. Se m = 2, então a máxima diferença será
considerada a diferença consecutiva, pois a diferença em cada resultado do espaço amostral é única, em
razão de termos amostras de tamanho 2.
Max gap probabilidades
from itertools import combinations
import pandas as pd
def checkgap(cmb):

x = np.diff(cmb)
return max(x)

7.5. ALGUNS PROBLEMAS DE PROBABILIDADE 129

def maxgap(n, m, k):
if m <= 1 or m > n:

print('m deve estar entre 1 e n!')
return

comb = list(combinations(range(1,n+1), m))
y = np.empty(0)
for cmb in comb:

y = np.append(y,checkgap(cmb))
return np.mean(y == k)

função para todo o suporte
def maxgapsx(n, m):

if m <= 1 or m > n:
print('m deve estar entre 1 e n!')
return

comb = list(combinations(range(1,n+1), m))
y = np.empty(0)
for cmb in comb:

y = np.append(y,checkgap(cmb))
res = {'x':[],'P(X=x)':[]}
for k in range(1,n-m+2):

res['P(X=x)'].append(np.mean(y == k))
res['x'].append(k)

return pd.DataFrame(res)

exemplo de uso
n = 6
m = 3
k = 2
maxgap(n,m,k)
maxgapsx(n,m)

np.float64(0.4)

x P(X=x)
0 1 0.2
1 2 0.4
2 3 0.3
3 4 0.1

Nosso último exemplo é para a probabilidade das somas das faces no lançamento de n dados e da diferença
em valor absoluto das faces no lançamento de 2 dados. Para este caso, podemos usar uma versão similar,
ou aplicando a função contag anteriormente apresentada ou aplicando a função product da biblioteca
intertools. Optamos por usar a função contag da classe cont.

Com uso de alguns pequenos detalhes adicionais, obtivemos os resultados para os dois casos. O segundo
caso, da diferença, por razões óbvias, são resultantes do lançamento de apenas 2 dados. Nos dois casos
apresentamos também os resultados das probabilidades obtendo todas as possibilidades que corresponde
ao espaço amostral do experimento aleatório. Temos uma função para obter uma probabilidade para um
valor específico da variável aleatória e outra para todos os valores de probabilidade relativos ao suporte da

130 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

variável aleatória, nos dois casos, o da soma de n dados e o da diferença de dois dados. Os resultados
estão apresentados no script a seguir:
Probabilidades para o lançamento de
n dados e obtenção da soma e também
para a diferença absoluta de 2 dados
somafaces: retorna P(X=x)
depende da class cont
def somafaces(n, x):

if x<n or x>6*n:
print('x deve estar entre n e 6n!')
return

res = Cont()
perm = res.contag(6, n)
y = np.empty(0)
for pmb in perm:

y = np.append(y,np.sum(pmb))
return np.mean(y == x)

def somafacessx(n):
if x<n or x>6*n:

print('x deve estar entre n e 6n!')
return

res = Cont()
perm = res.contag(6, n)
y = np.empty(0)
for pmb in perm:

y = np.append(y,np.sum(pmb))
res = {'x':[],'P(X=x)':[]}
for k in range(n,6*n+1):

res['P(X=x)'].append(np.mean(y == k))
res['x'].append(k)

return pd.DataFrame(res)
Probabilidades da diferença entre
duas faces de dois dados equilibrados
em módulo - retorna P(X=x), X=|i-j|
def difabs2faces(x):

if x<0 or x>5:
print('x deve estar entre 0 e 5!')
return

res = Cont()
perm = res.contag(6, 2)
y = np.empty(0)
for pmb in perm:

y = np.append(y,abs(np.diff(pmb)))
return np.mean(y == x)

Probabilidades da diferença entre
duas faces de dois dados equilibrados
em módulo - retorna P(X=x), para todo
o suporte de x
def difabs2facessx():

if x<0 or x>5:
print('x deve estar entre 0 e 5!')
return

7.5. ALGUNS PROBLEMAS DE PROBABILIDADE 131

res = Cont()
perm = res.contag(6, 2)
y = np.empty(0)
for pmb in perm:

y = np.append(y,abs(np.diff(pmb)))
res = {'x':[],'P(X=x)':[]}
for k in range(0,5+1):

res['P(X=x)'].append(np.mean(y == k))
res['x'].append(k)

return pd.DataFrame(res)
Exemplo
n = 4
x = 4
print('P(X =',x,') = ',somafaces(n,x))
dist = somafacessx(n)
dist
sum(dist['P(X=x)']) # checando
print('P(X =',x,') = ',difabs2faces(x))
difabs2facessx()

P(X = 4) = 0.0007716049382716049

x P(X=x)
0 4 0.000772
1 5 0.003086
2 6 0.007716
3 7 0.015432
4 8 0.027006
5 9 0.043210
6 10 0.061728
7 11 0.080247
8 12 0.096451
9 13 0.108025
10 14 0.112654
11 15 0.108025
12 16 0.096451
13 17 0.080247
14 18 0.061728
15 19 0.043210
16 20 0.027006
17 21 0.015432
18 22 0.007716
19 23 0.003086
20 24 0.000772

1.0

P(X = 4) = 0.1111111111111111

x P(X=x)
0 0 0.166667

132 CHAPTER 7. CONJUNTOS E ELEMENTOS DE ANÁLISE COMBINATÓRIA EM PYTHON

x P(X=x)
1 1 0.277778
2 2 0.222222
3 3 0.166667
4 4 0.111111
5 5 0.055556

7.6 Exercícios
1. Obter uma função para obter por meio de simulação Monte Carlo as probabilidades dos lançamentos

de n dados e obtenção da soma e também para as diferenças em módulo entre as faces nos lançamentos
de dois dados. Para fazer isso escolha um grande número de repetições e em cada uma delas simule
os resultados dos lançamentos dos dados. Obtenha os resultados das variáveis aleatórias e ao final
calcule as proporções de cada ocorrência, conforme fizemos de forma exata anteriormente. Estas
proporções são estimativas empíricas das probabilidades almejadas.

2. Obtenha também por Monte Carlo as probabilidades empíricas de uma mão de pôquer, simulando
um grande número de mãos. Para isso é preciso criar um baralho, que pode ser feito com um
dicionário e depois amostrar as mãos de cinco cartas e calcular as probabilidades empíricas de cada
possível resultado. Confrontar com as probabilidades exatas obtidas neste capítulo. O que você
espera que ocorra com essa comparação quando aumenta-se o número de simulações?

Chapter 8

Métodos Bootstrap em Python

Neste capítulo, pretendemos apresentar os conceitos básicos de bootstrap de uma forma bastante simples.
Vamos fazer algumas funções simples em alguns casos particulares.

8.1 Introdução
Um dos principais temas envolvendo os métodos computacionalmente intensivos e, talvez, o maior
responsável pela popularidade desses métodos é a técnica bootstrap. O método bootstrap envolve
reamostragens com reposição da amostra original. Inspirado na teoria da amostragem, o bootstrap é
utilizado para a realização de testes de hipótese, estimação de parâmetros por intervalos e estimação de
erros padrões.

A grande vantagem de se utilizar os métodos de reamostragens, como o bootstrap, para realizar inferência
é quando não conhecemos a distribuição de probabilidade da população e o modelo normal não é adequado
para os dados ou resíduos. O problema surge, quando violamos as condições assumidas para a aplicação
de um teste ou obtenção de um intervalo ou região de confiança.

Neste capítulo, estudaremos os métodos bootstrap para realizar inferência sobre parâmetros de interesse.

8.2 Bootstrap Não-Paramétrico
Bootstrap não-paramétrico: a ideia é realizar reamostragem da amostra original. Seja amostra aleatória
de tamanho n, Y1, Y2, . . ., Yn, de uma população com distribuição desconhecida e cujo interesse é um
parâmetro θ, podemos obter uma série de reamostragem com reposição de tamanho n e estimar o parâmetro
de interesse por uma função θ̂ das amostras obtidas.

Essa série de estimativas obtidas é finita e representa uma amostra da distribuição do estimador, permitindo
que possamos fazer inferência sobre θ. Se pudéssemos obter a distribuição de amostragem de θ̂ diretamente
da teoria de amostragem, poderíamos fazer inferências sobre θ sem a necessidade de utilizar bootstrap.
Para isso, devemos conhecer a distribuição de probabilidade de Yj , j = 1, 2, . . ., n e, a partir dela,
deduzirmos a distribuição de amostragem da função de interesse θ̂.

Nem sempre isso é possível, principalmente se não conhecemos a distribuição de probabilidade da variável
aleatória que estamos amostrando. Para a maior parte dos modelos probabilísticos, teorias exatas não são
conhecidas ou são intratáveis analiticamente. Nesse caso, usamos a distribuição de probabilidade empírica,
pela qual atribuímos a cada uma das observações amostrais a probabilidade 1/n;

133

134 CHAPTER 8. MÉTODOS BOOTSTRAP EM PYTHON

A ideia do bootstrap é substituir a distribuição desconhecida da população pela distribuição empírica. Por
essa razão, que denominamos esse método de bootstrap não-paramétrico. Ao obtermos um série finita de
reamostragens de mesmo tamanho da amostra original e construirmos uma amostragem da distribuição
do estimador, estamos realizando um processo de mímica em relação à teoria de amostragem.

Esse processo se baseia no fato de que a amostra obtida da população contém toda a informação disponível
dessa população subjacente. Então, ela passa a representar a “população” para o processo de reamostragem.

Efron (1979) foi o pesquisador que organizou as teorias a respeito desse método e conectou o bootstrap
não-paramétrico com as técnicas estatísticas para estimar erros, aceitas desde os anos de 1930, tais como
jackknife e o método delta. Tanto a técnica bootstrap quanto os métodos de permutação assumem apenas
que as variáveis aleatórias atendam ao princípio de serem permutáveis (exchangeable), que é uma suposição
mais fraca que sejam independentes e identicamente distribuídas. Por permutáveis (intercambiáveis)
devemos entender que a distribuição de probabilidade de quaisquer k observações consecutivas (k = 1, 2,
. . ., n) não se altera quando a ordem das observações é trocada por meio de alguma permutação.

O algoritmo geral das reamostragens bootstrap, para estimar um pa-râ-me-tro θ desconhecido, cuja
distribuição de probabilidade é f (de Y), considerando, ainda, que o estimador θ̂ é uma função dos valores
amostrais, ou seja, θ̂ = g(Y1, Y2, . . ., Yn), é dado por:

1. atribuir massa de probabilidade 1/n para cada observação amostral Yj , j = 1, 2, . . ., n, criando a
distribuição de probabilidade empírica f̂ ;

2. gerar amostras aleatórias com reposição da distribuição de probabilidade empírica f̂ , denominada
de amostra de bootstrap e dada por Ỹ1, Ỹ2, . . ., Ỹn;

3. calcular uma estimativa de θ̂ por θ̃, usando a amostra de bootstrap no lugar da amostra original, da
seguinte forma θ̃ = g(Ỹ1, Ỹ2, . . ., Ỹn);

4. repetir os passos 2 e 3 B vezes.

O número de reamostragens foi denotado por B e a escolha de valores adequados conforme a situação
será discutida posteriormente. A inferência que pretendemos realizar depende da distribuição descon-
hecida de θ̂ − θ. Quando aplicamos o algoritmo anterior, obtemos uma amostra Monte Carlo, da
distribuição de bootstrap, da quantidade θ̃ − θ̂. Se n for suficientemente grande, pelas ideias do método
bootstrap, extremamente comprovadas e aceitas atualmente, esperamos que as duas distribuições sejam
aproximadamente idênticas.

8.3 Estimação
Para estimar parâmetros de uma população, a técnica bootstrap é uma excelente alternativa, principalmente
se a distribuição não for a normal, ou outra distribuição, cujos processos de estimação sejam bem
fundamentados teoricamente, como, por exemplo, a estimação de proporções binomiais p. Se o método
bootstrap for aplicado a esses casos, não será um problema, pois os resultados serão equivalentes ao da
teoria clássica.

No entanto, se as suposições de um processo de estimação clássico forem violadas, em geral, os métodos
bootstrap resultarão em processos de estimação com melhores propriedades. Inicialmente, devemos
entender que os métodos bootstrap não melhoram as estimativas pontuais, mas fornecem mecanismos
apropriados para estimar os erros padrões, intervalos de confiança e a distribuição de amostragem do
estimador, por mais complexo que seja esse estimador.

8.3.1 Erro padrão:
Para a estimação do erro padrão de um estimador θ̂ de um parâmetro θ, devemos obter a distribuição
bootstrap desse estimador, conforme descrito no algoritmo anteriormente apresentado. Assim, se consider-
armos uma amostra aleatória Y1, Y2, . . ., Yn de tamanho n da população de interesse, que depende de um

8.3. ESTIMAÇÃO 135

parâmetro θ, que pretendemos estimar, então aplicamos o algoritmo anterior e obtemos uma amostra
bootstrap de tamanho B da distribuição desse estimador.

Se a amostra for θ̃1, θ̃2, θ̃3, . . ., θ̃B , podemos estimar o erro padrão de θ̂ por

Sθ̂ =

√√√√ 1
B − 1

B∑
j=1

(
θ̃j − ¯̃θ

)2
=

√√√√√√ 1
B − 1

 B∑
j=1

θ̃2
j −

(∑B
j=1 θ̃j

)2

B

, (8.1)

em que

¯̃θ =

B∑
j=1

θ̃j

B
.

Depreendemos da expressão (Equation 8.1), que o erro padrão do estimador de θ é o desvio padrão da
distribuição bootstrap desse estimador. Se, entretanto, o parâmetro θ for a média µ da distribuição de
probabilidade amostrada, podemos simplificar a expressão do estimador do erro padrão da média amostral
Ȳ , pois, nesse caso, não precisamos da amostra bootstrap do estimador.

Da teoria estatística, sabemos que o erro padrão da média amostral Ȳ é dado por SȲ = (1/n)1/2S, sendo
S dado por

S =

√√√√ 1
n − 1

n∑
j=1

(Yj − Ȳ)2 =

√√√√√√ 1
n − 1

∑
j=1

Y 2
j −

(∑n
j=1 Yj

)2

n

. (8.2)

import numpy as np
import matplotlib.pyplot as plt
import random
função para retornar a mediana
def est_med(x):

y = np.sort(x)
n = len(x)
if n%2 == 0:

est = (y[n//2 - 1] + y[(n+2)//2 - 1]) / 2
else:

est = y[(n+1) // 2 - 1]
return est

função para o mínimo
def est_min(x):

return np.min(x)

função para o máximo
def est_max(x):

return np.max(x)

função para fazer uma reamostragem bootstrap
e aplicar o estimador genérico est, recebendo
x uma lista numpy
def sampleOneBoot(x, est, *args):

y = random.choices(x, k = len(x))
estm = est(y, *args)

136 CHAPTER 8. MÉTODOS BOOTSTRAP EM PYTHON

return estm

função para obter a distribuição de bootstrap
def dist_boot(x, est, B = 2000, *args):

dist = np.empty(0)
for i in range(B):

dist = np.append(dist, sampleOneBoot(x, est, *args))
return dist

função para obter o erro padrão do estimador
def stderr_est(x, est, B = 2000, *args):

result = dist_boot(x, est, B, *args)
se_boot = np.std(result)
est_boot = est(x, *args)
return {"Estimativa": est_boot, "Erro padrão": se_boot}

estimar mediana normal
n = 300
B = 2000
x = np.random.normal(size=n)
dist = dist_boot(x, est_med)
plt.clf() # limpar o gráfico
graf=plt.hist(dist,bins='auto',color='#14e8f3',rwidth=0.98,alpha=0.7) #histograma
print('Média: ',np.mean(dist), 'e Desvio padrão: ', np.std(dist, ddof=1))
res_med = stderr_est(x, est_med, B)
for key, value in res_med.items():

print(f"{key}: {value}")
valor teórico: aprox. (pi/2)ˆ0.5*sigma/nˆ0.5
print((np.pi/2)**0.5*1/n**0.5)

mínimo de uma normal
res_min = stderr_est(x, est_min, B)
for key, value in res_min.items():

print(f"{key}: {value}")

máximo de uma normal
res_max = stderr_est(x, est_max, B)
for key, value in res_max.items():

print(f"{key}: {value}")

Média: 0.06667392719202572 e Desvio padrão: 0.07132297691219258
Estimativa: 0.044016616671861214
Erro padrão: 0.07066972226997008
0.07236012545582675
Estimativa: -2.533746323239818
Erro padrão: 0.04863777469304032
Estimativa: 2.6917080703170906
Erro padrão: 0.10761714347950621

8.3. ESTIMAÇÃO 137

0.2 0.1 0.0 0.1 0.2 0.3
0

50

100

150

200

250

300

350

8.3.2 Correção de Viés:
Devemos explorar no bootstrap a possibilidade de correção de viés para estimadores viesados. Sabemos
da teoria clássica que o viés δ de um estimador θ̂ é definido por

δθ̂ = E(θ̂) − θ; (8.3)

Como na distribuição de bootstrap de um estimador θ̂, a média representa a esperança em (Equation 8.3)
e o estimador θ̂ na amostra original, faz o mesmo papel de θ na população, podemos estimar o viés por

δ̃θ̂ = ¯̃θ − θ̂. (8.4)

É comum pensarmos que ¯̃θ seria o estimador corrigido para viés, o que não é verdade. Podemos obter um
estimador ajustado por

θ̂aj. =θ̂ − δ̃θ̂ = θ̂ − ¯̃θ + θ̂

=2θ̂ − ¯̃θ;

Na sequência, abordaremos alguns dos diferentes tipos de intervalos de confiança usualmente empregados
com o método denominado bootstrap não-paramétrico.
função para obter o erro padrão do estimador
e aplicar a correção de viés
def stderr_vies_est(x, est, B = 2000, *args):

result = dist_boot(x, est, B, *args)
se_boot = np.std(result)
est_boot = est(x, *args)
mean_boot = np.mean(result)
vies_boot = mean_boot - est_boot
est_nvies = est_boot - vies_boot
return {"Estimativa": est_boot, "Erro padrão": se_boot, \

"Viés ": vies_boot, "Est. Não Viesada ": est_nvies}

138 CHAPTER 8. MÉTODOS BOOTSTRAP EM PYTHON

estimar mediana exponencial e erro padrão
import scipy as sp
n = 300
B = 2000
lamb = 0.1
x = np.random.exponential(scale = 1 / lamb, size = n)
dist = dist_boot(x, est_med)
plt.clf() # limpar o gráfico
graf=plt.hist(dist, bins='auto',color='#14e8f3',rwidth=0.98,alpha=0.7) # histograma
res_med = stderr_vies_est(x, est_med, B)
for key, value in res_med.items():

print(f"{key}: {value}")
mediana teórica
sp.stats.expon.ppf(0.5, scale = 1 / lamb)

Estimativa: 6.920665900096914
Erro padrão: 0.6460979643128233
Viés : -0.025083656725473524
Est. Não Viesada : 6.9457495568223875

np.float64(6.931471805599453)

6 7 8 9
0

50

100

150

200

250

8.3.3 Intervalo de Confiança Padrão de Bootstrap
Em algumas ocasiões, podemos assumir que a distribuição de bootstrap do estimador θ̃ é normal. Isso
ocorre em situações especiais de amostragem: como o caso específico de θ̃ ser a média amostral Ȳ em
amostragem da distribuição normal e, também, no caso de amostras grandes n em consequência do
teorema do limite central.

Sabemos que θ̃ é uma função dos elementos amostrais e, em consequência disso, para muitas dessas funções,
a distribuição normal ocorre como decorrência do teorema do limite central. Infelizmente, a experiência
tem mostrado que esse intervalo é via de regra geral, muito pobre, no sentido de que as suas propriedades
não são preservadas.

8.3. ESTIMAÇÃO 139

A principal propriedade requerida de um intervalo de confiança é que ele possua probabilidade de cobertura
igual ao valor nominal de confiança 1 − α adotado, o que, em geral, não é atendida nesse caso. A ideia é
admitir o efeito do teorema do limite central:

θ̃∼̇N
(

θ̂, S2
θ̂

)
, (8.5)

em que, onde se encontra o símbolo ∼̇, deve se ler “se distribui aproximadamente como”, θ̂ é o valor do
estimador na amostra original e Sθ̂ é o estimador do erro padrão de θ̂, obtido na distribuição bootstrap.

Em consequência de (Equation 8.5}), podemos construir o intervalo bootstrap padrão com confiança de
aproximadamente 1 − α por

IC1−α(θ) :
[
θ̂ − Z1−α/2Sθ̂; θ̂ − Zα/2Sθ̂

]
, (8.6)

em que Zα/2 e Z1−α/2 são os quantis da distribuição normal padrão. O intervalo de confiança (Equation 8.6),
como já havíamos comentado, possui probabilidade de cobertura, em geral, inferior ao valor nominal de
100(1 − α)%.

Podemos melhorar este intervalo obtendo os limites do intervalo de confiança usando um estimador
corrigido para viés. . O resultado para este caso é:

IC1−α(θ) :
[
θ̂aj. − Z1−α/2Sθ̂; θ̂aj. − Zα/2Sθ̂

]
, (8.7)

em que θ̂aj. é dado em (Equation 8.5).
função para obter o IC padrão
com correção de viés
def ic_padrao_cv_boot(x, est, B = 2000, alpha = 0.05, *args):

res = dist_boot(x, est, B, *args)
est_boot = est(x, *args)
se_boot = np.std(res)
mean_boot = np.mean(res)
vies_boot = mean_boot - est_boot
me = sp.stats.norm.ppf(1 - alpha / 2) * se_boot
li = est_boot - vies_boot - me
ls = est_boot - vies_boot + me
return {'estimativa': est_boot, 'erro padrão': se_boot, \

'viés': vies_boot, 'limite inferior': li, 'limite superior': ls}

exemplo para a mediana exponencial
n = 30
B = 2000
lamb = 0.1
alpha = 0.05
x = np.random.exponential(scale = 1 / lamb, size = n)
res_med = ic_padrao_cv_boot(x, est_med, B, alpha)
for key, value in res_med.items():

print(f"{key}: {value}")
mediana teórica
sp.stats.expon.ppf(0.5, scale = 1 / lamb)

estimativa: 7.121971822984506
erro padrão: 1.2075535335307557
viés: 0.2479684553330932

140 CHAPTER 8. MÉTODOS BOOTSTRAP EM PYTHON

limite inferior: 4.507241932527051
limite superior: 9.240764802775775

np.float64(6.931471805599453)

A seguir, apresentamos um exemplo para a distribuição gama. Nos subsequentes exemplos, usaremos a
mesma amostra da mesma distribuição.

. . .
Exemplo para a mediana da gama
n = 30
B = 2000
alpha = 0.05
a = 0.5
x = np.random.gamma(a, size = n)
res_med = ic_padrao_cv_boot(x, est_med, B, alpha)
for key, value in res_med.items():

print(f"{key}: {value}")
mediana teórica
sp.stats.gamma.ppf(0.5, a)

estimativa: 0.18434901349210409
erro padrão: 0.10655478333944343
viés: 0.030653412645146122
limite inferior: -0.05514793687881975
limite superior: 0.3625391385727357

np.float64(0.227468211559786)

8.3.4 Intervalo de Confiança Baseado em Percentis Bootstrap
É um dos mais interessantes, pois sua obtenção é, no mínimo, curiosa. Assumir, normalidade da distribuição
bootstrap é subutilizar o potencial do método. Entretanto, podemos pensar que existe uma função ϕ
monótona, tal que ϕ(θ̃) tenha distribuição normal.

Se obtivermos a distribuição de bootstrap dessa função, obtida pela sua aplicação em cada reamostragem
com reposição da amostra original, podemos obter seu desvio padrão Sϕ(θ̃). Como essa distribuição, obtida
considerando um número finito B, é uma amostra de uma distribuição normal, os intervalos obtidos por

IC1−α(ϕ(θ)) :
[
ϕ(θ̂) − Z1−α/2Sϕ(θ̃); ϕ(θ̂) − Zα/2Sϕ(θ̃)

]
ou diretamente ordenando-se a amostra de tamanho B da distribuição bootstrap e tomando-se os seus
percentis 100(α/2)% e 100(1 − α/2)%, devem se equivaler na medida em que B → ∞.

Segundo Efron e Tibshirani (1993), a transformação ϕ que irá levar a normalidade sempre existe. Dessa
forma, o intervalo de confiança para θ, uma vez que ϕ é uma função monótona, é dado por

IC1−α(θ) :
[
ϕ−1

(
ϕ(θ̂) − Z1−α/2Sϕ(θ̃)

)
; ϕ−1

(
ϕ(θ̂) − Zα/2Sϕ(θ̃)

)]
, (8.8)

em que ϕ−1 é a função inversa de ϕ.

Podemos verificar de (Equation 8.8) que, o intervalo de confiança para o parâmetro na escala original é
obtido pela transformação inversa dos limites do intervalo obtidos na escala transformada. Utilizamos em
(Equation 8.8) a transformação inversa dos limites obtidos a partir dos percentis normais padrão e da
média e variância da distribuição de bootstrap para os obtenção dos limites do intervalo de confiança
na escala original. Entretanto, poderíamos ter utilizado uma versão que usaria a transformação inversa

8.3. ESTIMAÇÃO 141

dos percentis 100(α/2)% e 100(1 − α/2)% obtidos diretamente da distribuição de bootstrap na escala
transformada.

Isso pode ser feito, em virtude do que acabamos de comentar, ou seja, que a distribuição de bootstrap
obtida pela transformação, exceto pelo fato de ser uma amostra finita, é normal e os dois intervalos na
escala transformada se equivalem assintoticamente.

Posto dessa forma, parece ser fácil obter um intervalo como o apresentado em (Equation 8.8). Isso não
é verdade, pois necessitaríamos obter a função ϕ, que levaria a uma distribuição de bootstrap normal.
Encontrar tal função para cada caso real é uma tarefa inexequível. Por outro lado, não precisamos conhecer
tal função, basta pressupor sua existência.

Como os valores do intervalo, obtidos na escala transformada, quando mapeados na escala original são
equivalentes aos percentis 100(α/2)% e 100(1−α/2)% da distribuição de bootstrap de θ̃, então a construção
do intervalo de confiança por esse método é trivial. Esse resultado é extremamente interessante e foi
preponderante para o sucesso dos métodos de estimação bootstrap. Como afirmam Efron e Tibshirani
(1993), podemos entender o método dos percentis para a obtenção do intervalo de confiança, como sendo
um algoritmo automático de incorporação de tais transformações que levam à normalidade. Para que fique
mais claro, podemos dizer que os limites obtidos de (Equation 8.8) correspondem exatamente ao intervalo
baseado em percentis da distribuição de bootstrap na escala original, portanto não precisamos conhecer a
transformação que irá conduzir a distribuição de bootstrap à normalidade, mas apenas pressupor sua
existência!

Para aplicar o intervalo de confiança baseado em percentis bootstrap, devemos aplicar o algoritmo
anteriormente apresentado. Obtemos: θ̃1, θ̃2, θ̃3, . . ., θ̃B .

Devemos ordenar esses valores, obtendo as estatísticas de ordem por: θ̃(1), θ̃(2), θ̃(3), . . ., θ̃(B). Em seguida,
podemos obter o intervalo de confiança a partir dessa função de distribuição empírica, obtendo os percentis
100(α/2)% e 100(1 − α/2)%. Assim, construímos o intervalo de confiança baseado em percentis bootstrap
por

IC1−α(θ) :
[
θ̃(k1); θ̃(k2)

]
, (8.9)

em que k1 = ⌊(B + 1)(α/2)⌋ e k2 = ⌊(B + 1)(1 − α/2)⌋, ou seja, são os maiores inteiros que não são
maiores que (B + 1)(α/2) e (B + 1)(1 − α/2), respectivamente; θ̃(k1) é o percentil 100(α/2)% da função
de distribuição bootstrap empírica; e θ̃(k2), o percentil 100(1 − α/2)% da função de distribuição bootstrap
empírica.

Esse intervalo possui propriedade melhores que o anterior e funciona bem na maioria dos casos mais
simples. Entretanto, existem alternativas melhores. Veremos, a seguir, alguns outros tipos de intervalos
que são melhores que os dois primeiros, embora em algumas situações o método percentil é superior a
alguns deles.

Uma grande vantagem do intervalo percentílico é que ele possui a propriedade de respeitar a transformação,
ou seja, os limites desse intervalo obedecem ao domínio do parâmetro que está sendo estimado, o que, em
alguns métodos, não ocorre.
função para obter o IC Percentis
def ic_perc_boot(x, est, B = 2000, alpha = 0.05, *args):

res = dist_boot(x, est, B, *args)
est_boot = est(x, *args)
se_boot = np.std(res)
mean_boot = np.mean(res)
vies_boot = mean_boot - est_boot
li, ls = np.percentile(res, [alpha/2 * 100, (1-alpha/2) * 100])
return {'estimativa': est_boot, 'erro padrão': se_boot, \

'viés': vies_boot, 'limite inferior': li, 'limite superior': ls}

142 CHAPTER 8. MÉTODOS BOOTSTRAP EM PYTHON

Exemplo para a mediana da gama
B = 2000
alpha = 0.05
res_med = ic_perc_boot(x, est_med, B, alpha)
for key, value in res_med.items():

print(f"{key}: {value}")
mediana teórica
sp.stats.gamma.ppf(0.5, a)

estimativa: 0.18434901349210409
erro padrão: 0.11110870673684117
viés: 0.034308486716213726
limite inferior: 0.10628122070963494
limite superior: 0.522791903746331

np.float64(0.227468211559786)

8.3.5 Intervalo de Confiança Básico de Bootstrap
Variação do intervalo baseado em percentis bootstrap, resulta da obtenção da distribuição de θ̃ − θ̂, que
representa, simplesmente, a versão bootstrap da distribuição de amostragem de θ̂ − θ. Para grandes
valores de B, θ̃ − θ̂ converge em distribuição para θ̂ − θ.

Se considerarmos que existe uma função ϕ(θ̃ − θ̂) monótona, capaz de conduzir a normalidade, então
seria necessário obtermos, apenas, os percentis 100(α/2)% e 100(1 − α/2)% da distribuição original, pois
eles mapeiam valores equivalentes na escala normal transformada.

Se denotarmos por δ̃(α/2) e δ̃(1−α/2) esses percentis na escala original, então

P
[
δ̃(α/2) ≤ θ̃ − θ̂ ≤ δ̃(1−α/2)

]
= 1 − αP

[
θ̃(α/2) − θ̂ ≤ θ̃ − θ̂ ≤ θ̃(1−α/2) − θ̂

]
= 1 − α.

Como
θ̃ − θ̂

d−→ θ̂ − θ,

então, substituindo na expressão anterior, temos

P
[
θ̃(α/2) − θ̂ ≤ θ̂ − θ ≤ θ̃(1−α/2) − θ̂

]
= 1 − α.

Se isolarmos θ teremos
P
[
2θ̂ − θ̃(1−α/2) ≤ θ ≤ 2θ̂ − θ̃(α/2)

]
= 1 − α. (8.10)

Os limites da afirmativa probabilística em (Equation 8.10) são os limites de uma intervalo de 100(1 −
α)% de confiança de bootstrap básico, dado por

IC1−α(θ) :
[
2θ̂ − θ̃(1−α/2); 2θ̂ − θ̃(α/2)

]
. (8.11)

Esse intervalo pode também ser visto como o intervalo de confiança t de bootstrap, que será o próximo a ser
estudado, quando o erro padrão em cada reamostragem for considerado igual a unidade. As quantidades
θ̃(1−α/2) e θ̃(α/2) do intervalo (Equation 8.11) são, respectivamente, os percentis θ̃(k1) e θ̃(k2) do intervalo
(Equation 8.9) baseado em percentis. Observamos que o presente método é apenas uma variação do
método percentil.

8.3. ESTIMAÇÃO 143

função para obter o IC Padrão Básico
def ic_basic_boot(x, est, B = 2000, alpha = 0.05, *args):

res = dist_boot(x, est, B, *args)
est_boot = est(x, *args)
se_boot = np.std(res)
mean_boot = np.mean(res)
vies_boot = mean_boot - est_boot
ls, li = np.percentile(res, [alpha/2 * 100, (1 - alpha / 2) * 100])
li = 2 * est_boot - li
ls = 2 * est_boot - ls
return {'estimativa': est_boot, 'erro padrão': se_boot, \

'viés': vies_boot, 'limite inferior': li, 'limite superior': ls}

Exemplo para a mediana da gama
B = 2000
alpha = 0.05
res_med = ic_basic_boot(x, est_med, B, alpha)
for key, value in res_med.items():

print(f"{key}: {value}")
mediana teórica
sp.stats.gamma.ppf(0.5, a)

estimativa: 0.18434901349210409
erro padrão: 0.10683319258172806
viés: 0.028989179933882142
limite inferior: -0.15409387676212283
limite superior: 0.2640911682718689

np.float64(0.227468211559786)

8.3.6 Intervalo de Confiança Bootstrap com Correção de Viés Acelerado
Os intervalos de confiança bootstrap, anteriormente apresentados, possuem deficiências relativas às
probabilidades de cobertura, pelo menos, em parte das situações práticas. Outro método de obtenção de
intervalos bootstrap possui qualidades melhores do que os intervalos anteriores, embora possua maiores
dificuldades de obtenção: bootstrap com correção de viés acelerado, bias-corrected and accelerated (BCa).

Este é o método ideal a ser utilizado. O método BCa é obtido de forma semelhante ao método bootstrap
percentil, porém ao se determinar os percentis da distribuição empírica de bootstrap θ̃(1), θ̃(2), θ̃(3), . . .,
θ̃(B) do estimador, duas quantidades â e ẑ0 são necessárias também. As quantidades â e ẑ0 são definidas
como aceleração e correção de viés;.

O intervalo de confiança baseado em percentis bootstrap com correção de viés acelerado, BCa, é dado por

IC1−α(θ) :
[
θ̃(k1); θ̃(k2)

]
, (8.12)

em que k1 = ⌊(B + 1)p1⌋ e k2 = ⌊(B + 1)p2⌋, ou seja, são os maiores inteiros que não são maiores que
(B + 1)p1 e (B + 1)p2, respectivamente; θ̃(k1) é o percentil 100(p1)% da função de distribuição bootstrap
empírica; e θ̃(k2), o percentil 100p2% da função de distribuição bootstrap empírica.

Para valores conhecidos de â e ẑ0, os valores de p1 e p2, usados para determinar as ordens k1 e k2 do valor
de θ̃ na distribuição empírica de bootstrap, conforme apresentado em (Equation 8.12), são determinados

144 CHAPTER 8. MÉTODOS BOOTSTRAP EM PYTHON

por

p1 = Φ
(

ẑ0 +
ẑ0 + zα/2

1 − â
[
ẑ0 + zα/2

]) e p2 = Φ
(

ẑ0 +
ẑ0 + z1−α/2

1 − â
[
ẑ0 + z1−α/2

]) , (8.13)

em que Φ(x) é a função de distribuição da normal padrão avaliada no valor x e zα/2 e z1−α/2 são os
quantis 100(α/2)% e 100(1 − α/2)% dessa mesma distribuição, respectivamente.

Se tanto â quanto ẑ0 forem nulos, os valores de p1 e p2 serão, respectivamente, α/2 e 1 − α/2, como pode
ser facilmente deduzido de (Equation 8.13). Nesse caso, os intervalos BCa, expressão (Equation 8.12) e
bootstrap percentil, expressão (Equation 8.9), são equivalentes. Valores não nulos dessas quantidades,
modificam os limites do intervalo (Equation 8.12) e reduzem algumas deficiências do intervalo percentílico
(Equation 8.9), conforme afirmam Efron e Tibshirani (1993).

O valor de ẑ0 é definido como o quantil da normal padrão cuja probabilidade acumulada é dada pela
proporção de estimativas na distribuição de bootstrap que é menor que a estimativa de θ na amostra
original. Esse valor reflete a discrepância que existe entre a mediana da distribuição de θ̃ e a mediana da
distribuição de θ̂, expressa em unidades normais padrão.

Assim, definimos ẑ0 por

ẑ0 = Φ−1


B∑

i=1
I
(

θ̃i < θ̂
)

B

 , (8.14)

em que Φ−1(p) é a inversa da função de distribuição da normal padrão avaliada em p entre 0 e 1 e I(·) é a
função indicadora que retorna 1 se o valor de seu argumento for verdadeiro e 0, se for falso.

O valor ẑ0 será zero somente se a proporção de valores da distribuição de bootstrap que são inferiores
a θ̂ for igual a 50%. O valor de â pode ser calculado utilizando estimativas jackknife do parâmetro de
interesse.

Admitamos que o estimador θ̂ seja obtido por uma função do vetor de observações amostrais Y = [Y1,
Y2, . . ., Yn]⊤ por θ̂ = g(Y). Se eliminarmos a i-ésima observação Yi teremos o vetor Y(i) = [Y1, Y2, . . .,
Yi−1, Yi+1, . . ., Yn]⊤, que corresponde ao vetor original sem a i-ésima observação. O estimador jackknife
é obtido aplicando-se essa mesma função ao vetor resultante sem a i-ésima observação, sendo dado θ̂(i) =
g(Y(i)).

Se calcularmos a média das n estimativas jackknife, obtidas com a eliminação de cada uma das n
observações originais, por

¯̂
θ(.) =

n∑
i=1

θ̂(i)

n
,

a aceleração â pode ser obtida por

â =

n∑
i=1

(¯̂
θ(.) − θ̂(i)

)3

6
[

n∑
i=1

(¯̂
θ(.) − θ̂(i)

)2
]3/2 . (8.15)

A quantidade â é chamada de aceleração porque representa a taxa de mudança do erro padrão de θ̂ em
relação à mudança dos valores do parâmetro verdadeiro θ (EFRON; TIBSHIRANI, 1993). Esse intervalo
de confiança, possui duas vantagens: a) resultar em estimativas dos limites do intervalo de confiança dentro

8.3. ESTIMAÇÃO 145

do espaço paramétrico, ou seja, possui a propriedade de respeitar a transformação; e b) fornecer resultados
muito precisos, no sentido de que as probabilidades de cobertura P (θ < θ̃(k1)) = α/2 e P (θ > θ̃(k2)) = α/2
são observadas com precisão de segunda ordem, enquanto o método percentil bootstrap possui precisão de
primeira ordem apenas.
função auxiliar para cômputo da aceleração
def aceler(x, est, *args):

n = len(x)
ai = np.empty(0)
for i in range(n):

yi = np.delete(x, i)
ai = np.append(ai, est(yi, *args))

ab = np.mean(ai)
a = np.sum((ab - ai)**3)/(6*(np.sum((ab - ai)**2))**1.5)
return a

função para obter o IC com correção de viés acelerado
def ic_cva_boot(x, est, B = 2000, alpha = 0.05, *args):

res = dist_boot(x, est, B, *args)
est_boot = est(x, *args)
p = np.sum(res < est_boot) / B
z0 = sp.stats.norm.ppf(p)
z1 = sp.stats.norm.ppf(alpha / 2)
z2 = sp.stats.norm.ppf(1 - alpha / 2)
a = aceler(x, est, *args)
aux = z0 + (z0+z1)/(1-a*(z0+z1))
p1 = sp.stats.norm.cdf(aux)
aux = z0 + (z0+z2)/(1-a*(z0+z2))
p2 = sp.stats.norm.cdf(aux)
se_boot = np.std(res)
mean_boot = np.mean(res)
vies_boot = mean_boot - est_boot
li, ls = np.percentile(res, [p1 * 100, p2 * 100])
return {'estimativa': est_boot, 'erro padrão': se_boot, \

'viés': vies_boot, 'limite inferior': li, 'limite superior': ls}

Exemplo para a mediana da gama
B = 2000
alpha = 0.05
res_med = ic_cva_boot(x, est_med, B, alpha)
for key, value in res_med.items():

print(f"{key}: {value}")
mediana teórica
sp.stats.gamma.ppf(0.5, a)

estimativa: 0.18434901349210409
erro padrão: 0.11131360747763198
viés: 0.029795316338799505
limite inferior: 0.09684162620102166
limite superior: 0.47855955490926155

np.float64(0.227468211559786)

146 CHAPTER 8. MÉTODOS BOOTSTRAP EM PYTHON

8.3.7 Intervalo de Confiança Bootstrap com Correção de Viés
Esse método é uma variação do método anterior, em que a aceleração â é considerada nula. Nesse caso, o
intervalo de confiança é obtido pela mesma expressão (Equation 8.13), embora os valores de p1 e p2 sejam
calculados por

p1 = Φ
(
2ẑ0 + zα/2

)
e p2 = Φ

(
2ẑ0 + z1−α/2

)
, (8.16)

sendo ẑ0 obtido da mesma forma que foi descrito anteriormente, por intermédio da equação (Equation 8.14).

Esse método é particularmente interessante em algumas situações em que os valores de â são difíceis de
ser obtidos. Esses casos são discutidos em Efron e Tibshirani (1993). Entretanto, o método BCa é, em
geral, mais eficiente e deve ser preferido.
função para obter o IC com correção de viés
def ic_cv_boot(x, est, B = 2000, alpha = 0.05, *args):

res = dist_boot(x, est, B, *args)
est_boot = est(x, *args)
p = np.sum(res < est_boot) / B
z0 = sp.stats.norm.ppf(p)
z1 = sp.stats.norm.ppf(alpha / 2)
z2 = sp.stats.norm.ppf(1 - alpha / 2)
aux = 2 * z0 + z1
p1 = sp.stats.norm.cdf(aux)
aux = 2 * z0 + z2
p2 = sp.stats.norm.cdf(aux)
se_boot = np.std(res)
mean_boot = np.mean(res)
vies_boot = mean_boot - est_boot
li, ls = np.percentile(res, [p1 * 100, p2 * 100])
return {'estimativa': est_boot, 'erro padrão': se_boot, \

'viés': vies_boot, 'limite inferior': li, 'limite superior': ls}

Exemplo para a mediana da gama
B = 2000
alpha = 0.05
res_med = ic_cv_boot(x, est_med, B, alpha)
for key, value in res_med.items():

print(f"{key}: {value}")
mediana teórica
sp.stats.gamma.ppf(0.5, a)

estimativa: 0.18434901349210409
erro padrão: 0.11224200627330427
viés: 0.03110938583237599
limite inferior: 0.10460685871233927
limite superior: 0.49595665024558944

np.float64(0.227468211559786)

8.3.8 Bootstrap no Python
Entre algumas possibilidades, podemos utilizar scipy.stats.bootstrap no Python para aplicarmos os
métodos de estimação intervalar bootstrap. A função bootstrap do scipy é dada por bootstrap(data,
statistic, *, n_resamples=9999, batch=None, vectorized=None, paired=False, axis=0,

8.3. ESTIMAÇÃO 147

confidence_level=0.95, alternative='two-sided', method='BCa', bootstrap_result=None,
rng=None, random_state=None). Três métodos estão disponíveis, quais são: method{‘percentile’,
‘basic’, ‘BCa’}, sendo o BCa o método padrão. O programa a seguir mostra como obter o intervalo de
confiança por este procedimento do scipy.

Os dados tem de ser transformados em uma tupla, antes de usar o método bootstrap. Veja o exemplo:

Demonstrando o scipy.stats.bootstrap
Exemplo para a mediana da gama
B = 2000
alpha = 0.05
x = (x,) # dados devem estar numa tupla de array
res_med = sp.stats.bootstrap(x, est_med, n_resamples=B, \

confidence_level=1-alpha, method='percentile')
print(res_med.confidence_interval)
res_med = sp.stats.bootstrap(x, est_med, n_resamples=B, \

method='basic', confidence_level=1-alpha)
print(res_med.confidence_interval)
res_med = sp.stats.bootstrap(x, est_med, n_resamples=B, \

method='BCa', confidence_level=1-alpha)
print(res_med.confidence_interval)
mediana teórica
sp.stats.gamma.ppf(0.5, a)

ConfidenceInterval(low=np.float64(0.10628122070963494), high=np.float64(0.522791903746331))
ConfidenceInterval(low=np.float64(-0.15409387676212283), high=np.float64(0.2624168062745732))
ConfidenceInterval(low=np.float64(0.10460685871233927), high=np.float64(0.522791903746331))

np.float64(0.227468211559786)

148 CHAPTER 8. MÉTODOS BOOTSTRAP EM PYTHON

References

A. C. Atkinson and M. C. Pearce. the computer generation of beta, gamma and normal random variable.
journal of the royal statistical society, series a, 139(4):431–461, 1976.

J. N. W. Dachs. Estatìstica computacional: uma introdução em turbo Pascal. LTC, Rio de Janeiro, 1988.

L. Devroy. generating the maximum of independent identically distributed random variables. Computers
and mathematics with applications, 6:305–315, 1980.

L. Devroy. Non-uniform random variate generation. springer-verlag, new york, 1986.

D. F. Ferreira. Estatística multivariada. Editora UFLA, Lavras, 3 edition, 2018.

R. A. Johnson and D. W. Wichern. Applied multivariate statistical analysis. Prentice Hall, New Jersey, 4
edition, 1998.

V. Kachitvichyanukul and B. W. Schmeiser. binomial random variate generation. Communications of the
ACM, 31(2):216–222, 1988.

Donald E. Knuth. Literate programming. Comput. J., 27(2):97––111, May 1984.

G. Marsaglia and T. A. Bray. A convenient method for generating normal variables. Siam Review, 6(3):
260–264, 1964.

M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions On Modeling and Computer Simulation, 8(1):
3–30, 1998.

B. D. McCullough and B. Wilson. on the accuracy of statistical procedures in Microsoft Excel 97.
Computational Statistics and Data Analysis, 31:27–37, 1999.

T. H. J. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu. Técnicas de simulação em computadores.
Vozes, Petrópolis, 1971.

S. K. Park and K. W. Miller. Random number generators: good ones are hard to find. Communications
of the ACM, 31(10):1192–1201, 1988.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical recipes in Fortran: the art
of scientific computing. Cambridge University Press, Cambridge, 1992.

A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. springer, Berlin, 2000.

L. Schrage. A more portable FORTRAN random number generator. ACM transactions on mathematical
software, 5(2):132–138, 1979.

W. B. Smith and R. R. Hocking. Algorithm AS 53: Wishart variate generator. Applied Statistics - Journal
of the Royal Statistical Society - Series C, 21(3):341–345, 1972.

D. H. D. West. Updating mean and variance estimates: an improved method. ACM transactions on
mathematical software, 22(9):532–535, 1979.

149

150 References

Index

algoritmo
Hasting, 97

amostragem
por rejeição, 46

beta
incompleta, 93

classe
Python, 114

densidade
exponencial, 48
log-normal, 49
normal, 49
Tukey-lambda, 52

distribuição
binomial, 54
de combinações

lineares, 64
t multivariada

esférica, 72

equação
recursiva, 78

estatísticas
de ordem, 141

função
de distribuição

binomial, 90
exponencial, 85
normal, 95

de distribuição inversa
binomial, 56
exponencial, 48, 85

de probabilidade
binomial, 54, 90
geométrica, 55
Poisson, 94

densidade
exponencial, 85
normal, 87
normal multivariada, 63

Wishart, 68
Wishart invertida, 69

funções
trigonométricas, 50

gerador
padrão

mínimo, 39
geração

de variáveis
t multivariada, 72

Jacobiano
da transformação, 50

lema
soma de binomiais, 54
tempo de espera

da exponencial, 55
da geométrica, 55

linguagem
de alto-nível, 38

matriz
covariâncias, 81
soma de quadrados e produtos, 81

Mersenne
Twister, 40

método
Box-Müller, 49
congruencial, 37
da inversão

discreto, 56
métodos

listas, 12

números
aleatórios, 37, 39
pseudo-aleatórios, 37
uniformes, 37

precisão
dupla, 40

quadraturas

151

152 INDEX

gaussianas, 97
Monte Carlo, 98

quantis
exponencial, 85

random, 37
regra

trapezoidal
estendida, 95

simulação
matrizes aleatórias

Wishart, 70
Wishart invertidas, 70

soma
de produtos, 80

teorema
da transformação

de probabilidades, 45
tuplas, 14

Wishart
invertida, 69

	Prefácio
	Introdução ao Python
	Introdução aos Comandos e Objetos do Python
	Operações Aritméticas Básicas

	Variáveis Booleanas
	Strings
	Listas, Tuplas, Conjuntos e Dicionários
	Listas
	Tuplas
	Conjuntos
	Dicionários

	Matrizes e Arranjos
	Arquivos de Dados
	Estruturas de Controle de Programação
	Funções
	Estatística Computacional
	Exercícios

	Variáveis Aleatórias Uniformes
	Números Aleatórios Uniformes
	Números Aleatórios Uniformes no Python
	Exercícios

	Variáveis Aleatórias Não-Uniformes
	Introdução
	Métodos Gerais para Gerar Realizações de Variáveis Aleatórias
	Variáveis Aleatórias de Algumas Distribuições Importantes
	Distribuição Binomial
	Rotinas Python para Geração de Realizações de Variáveis Aleatórias
	Exercícios

	Geração de Amostras Aleatórias de Variáveis Multidimensionais
	Introdução
	Distribuição Normal Multivariada
	Distribuição Wishart e Wishart Invertida
	Distribuição t de Student Multivariada
	Outras Distribuições Multivariadas
	Exercícios

	Algoritmos para Médias, Variâncias e Covariâncias
	Introdução
	Algoritmos Univariados
	Algoritmos para Vetores Médias e Matrizes de Covariâncias
	Exercícios

	Aproximação de Distribuições
	Introdução
	Modelos Probabilísticos Discretos
	Modelos Probabilísticos Contínuos
	Quadraturas Gaussianas
	Newton-Raphson
	Funções Pré-Existentes no Python
	Exercícios

	Conjuntos e Elementos de Análise Combinatória em Python
	Introdução a Análise Combinatória no Python
	Permutações e Arranjos
	Contagem
	Conjuntos em Python
	Alguns Problemas de Probabilidade
	Exercícios

	Métodos Bootstrap em Python
	Introdução
	Bootstrap Não-Paramétrico
	Estimação
	Erro padrão:
	Correção de Viés:
	Intervalo de Confiança Padrão de Bootstrap
	Intervalo de Confiança Baseado em Percentis Bootstrap
	Intervalo de Confiança Básico de Bootstrap
	Intervalo de Confiança Bootstrap com Correção de Viés Acelerado
	Intervalo de Confiança Bootstrap com Correção de Viés
	Bootstrap no Python

	References

